You should be able to:

- 1. Understand the LRAM, RRAM and MRAM given a function or data points.
- 2. Write Riemann sums as an integral.
- 3. Evaluate an integral using geometric formulas.
- 4. Determine an indefinite integral using anti-differentiation.
- 5. Determine the area of a region using integrals.
- 6. Understand the difference between net area and total area.
- 7. Interpret integrals.
- 8. Evaluate definite integrals.
- 9. Use integration by substitution.
- 10. Use the rules of integration to evaluate integrals.
- 11. Work with integral applications including motion questions.
- 12. Use and understand the Fundamental Theorem of Calculus.

Practice Questions:

- 1. The cost of producing x ounces of gold from a new gold mine is C = f(x) dollars.
 - (a) What is the meaning of f'(x)? What are its units?
 - (b) What does the statement f'(800) = 17 mean?
 - (c) Do you think the values of f'(x) will increase or decrease in the short term? What about in the long term? Explain.
- 2. An automobile computer gives a digital readout of fuel consumption in gallons per hour. During a one hour trip you record the fuel consumption every five minutes.
 - Estimate the approximate total fuel consumption during the hour trip using:

(b)

(a) LRAM

RRAM

time (min.)	consumption (gal/hour)	time (min.)	consumption (gal/hour)
0	2.5	35	2.5
5	2.4	40	2.4
10	2.3	45	2.3
15	2.4	50	2.4
20	2.4	55	2.4
25	2.5	60	2.3
30	2.6		

- (c) If the automobile covered 60 miles in the hour, what was its fuel efficiency (in miles per gallon) for the trip?
- 3. Given that the velocity of a rocket can be described by the function: $v(t) = 60t + 3t^2$ determine the distance it has traveled during the time interval $t \in [1,17]$ using four rectangles and MRAM. *Include a diagram.*
- 4. page 298 # 9, 11, 15-24 page 299 # 25 – 33, 43 page 300 # 47, 50

- 5. Given that F(w) represents the rate of productivity of a factory in items produced per workers and w represents the number of workers, what is the meaning of the integral $\int_{120}^{120} F(w) dw$
 - 100

6. If f(t) represents the rate at which a realtor is selling houses (houses per month) where $\int f(t)dt$,

 $t \in [0,1)$ would represent January. Explain the meaning of the integral.

7. If the graph below describes the velocity of two cars for a 2.4 minute time period, determine when the two cars have traveled the same distance. Explain how you determined this answer.

8. (a) If
$$f(x)$$
 is continuous and $\int_{0}^{4} f(x) dx = 10$, find $\int_{0}^{2} 5f(2x) dx$

(b) If
$$g(x)$$
 is continuous and $\int_{0}^{9} g(x) dx = 4$, find $\int_{0}^{9} (x + 2g(x)) dx$

9. Fresnel also used the function $C(x) = \int_{0}^{x} \cos(\frac{\pi}{2}t^2) dt$ to describe the diffraction of light waves.

i) What are the critical values of C?

ii) What are the x coordinates for the inflection points of C?

10. If $\frac{dy}{dx} = \frac{2x}{y}$ and y(2) = -1, determine an equation for y and use it to determine y(5).

11. If
$$\frac{dy}{dx} = 6x^2(y-2)$$
 and $y(3) = 5$, determine an equation for y and use it to determine y(7).

12. About how accurately should we measure the radius or a sphere to calculate the surface area $(S = 4\pi r^2)$ to within 1% of its true value?

- 13. Find a linear approximation to estimate the value of y = f(0.1); given that : $\frac{dy}{dx} = \frac{1}{2\sqrt{x+1}} - \sin x$ when x = 0 and f(0) = 2. Then explain how you could tell if this was an under-estimate or an over-estimate of f(0.1).
- 14. A car is decelerating at a rate of If $2\sqrt{t}$ m/s² where t is time in seconds since it began to decelerate. If the car was travelling 23m/s when it first began to decelerate, determine the distance it travels prior to stopping.
- 15. The following slope field can be drawn for the differential equation: $\frac{dy}{dx} = x^2 + y^2 1$.
 - a) Sketch, on the field, a solution with the initial condition (1, 1)
 - b) For what value(s) of x and y would the slope be zero?

_	-	,	,	,				-	- 2	TV	,	,		,				,	,	-
- ÷	1	1	/	/	1	/	/	/	/	Ł	/	/	/	/	1	/	1	1	/	
-	,	,	,	,	· .	/	/	/	,	Ł	/	/	/	/		/	/	,	,	
	,	,	,	,	ļ	,	2	2	2		2	2	2	,	ļ	,	,	,	,	
- L	,	΄,	Ĵ,	Ċ,	1					1					1		Ċ,	΄,	,	
- [<i>.</i>	<u>(</u>	<u></u>	ĺ.	1		-	-	-	T	-	-	-		-1	ĺ.	΄.	<i>.</i>	<i>.</i>	1
	/	/			1	-	_	_	- 1	T	-	_	_	-	1			/	/	1
r	/	/	1	1	+	-	-	-	_	+	-	-	-	-	+	1	1	/	/	1
r	/	/	1	-	-	-	-	~	~	+	~	~	-	-	-	-	1	1	/	
r.	/	/	1	-	+	-	~	~	~	+	~	~	~	-	+	-	1	1	/	,
· ·	/	/	/	-	+	-	~	~	~	+	~	~	~	~	+	-	1	/	/	
_										*					_					×
- E							-			(1)				-	_					-
5	/	~	~	-	-1	~	~	·	~	φ	~	~	~	-	+	-	~	<i>(</i>	/	1
-2	,	,	2	-	-1	-	2	,	~	Ŧ	~	2	2	-	1	-	2	,	,	
-2	,	,	1	1 1	-1					Ŷ			1 1		1	1 1	1	,	,	
-2	, ,	, , , ,		1 1 1	-1	1 1 1				÷			1 1 1		1	1 1 1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
-2	, , , , , , , , , , , , , , , , , , , ,			1111		1 1 1 1								1 1 1 1	1	1111			, , ,	
-2	, , , , , , , , , , , , , , , , , , , ,			11111		1 1 1 1 1								1111	1 1 1	11111			, , , , , , , , , , , , , , , , , , , ,	
1-2	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,				11111			· · · · · 1						1 1 1 1 1				, , , , ,	
1-2	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,													1				, , , , , , ,	
1-2	, , , , , , , , , , , , , , , , , , , ,														1				, , , , , , ,	
-2	/ / / / / / / / / / / / / / / / / / /				71 1 1 1 1 1 1 1 1										1			, , , , , , , , , , , , , , , , , , , ,	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
-2	/ / / / / / / / / / / / / / / / / / /														1			· · · · · · · · · · · · · · · · · · ·	; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	

16 The slope of a function at any point (x,y) is $\frac{dy}{dx} = \frac{x-1}{y}$.

a) Sketch a slope field for this differential equation on the grid shown below.

		2	
-2	-1		 ×

- b) Given that the point (3, 4) is on the graph of f(x) write an equation of the tangent line to the graph of f(x) at x = 3
- c) Use the tangent line in part (a) to approximate f(2.9). Determine if this is an overestimate or an underestimate.
- d) Solve the differential equation: $\frac{dy}{dx} = \frac{x-1}{y}$ with the initial condition f(3) = 4
- e) Use the solution in part (c) to find f(2.9)

- 17. Evaluate the integrals: a) $\int \sec^2 x \sqrt{\tan^5 x} dx$ b) $\int x \sin(x^2 + 5) dx$
- 18. At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function W, models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation: $\frac{dW}{dW} = \frac{1}{2}(W 300)$ for the next 20 years. W is measured in tons, and t is

differential equation: $\frac{dW}{dt} = \frac{1}{25}(W - 300)$ for the next 20 years. *W* is measured in tons, and *t* is measured in years from the start of 2010.

- measured in years from the start of 2010.
- a) Use the line tangent to the graph of *W* at t = 0 to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time = $\frac{1}{4}$)
- b) Find $\frac{d^2W}{dt^2}$ in terms of W. Use $\frac{d^2W}{dt^2}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the amount of solid waste that the landfill contains at time t=1/4.
- c) Find the particular solution W = W(t) to the differential equation $\frac{dW}{dt} = \frac{1}{25}(W 300)$ with the initial condition W(0) = 1400.
- 19. Evaluate:

a)
$$\underline{by hand} \int_{0}^{1} \frac{6x}{\sqrt{10-6x^{2}}} dx$$

b) $\int 2e^{4x} dx$
c) $\int (\sin^{3} x \cdot \cos x) dx$
d) $\int x^{3}e^{2x^{4}} dx$

20. Find the interval on which the curve: $y = \int_{0}^{x} \frac{1}{8t - 2t^2} dt$ is concave downwards.