
Einstein’s special theory of relativity changed our fundamental
understanding of distance, time, and mass. He used his famous
thought experiments to illustrate these new concepts. This 
section contains several thought experiments similar to the ones
Einstein used.

Thought Experiment 1: Simultaneity
Imagine that you are sitting high on a hill on Canada Day and you
can see two different celebrations going on in the distance. You are
startled when two sets of fireworks ignite at exactly the same time
— one off to your left and the other far to your right. About 100 m
behind you, a car is travelling along a highway at 95 km/h. Do the
passengers in the car see the fireworks igniting simultaneously or
do they think that one set ignited before the other? Your immedi-
ate reaction is probably, “Of course they saw the fireworks igniting
simultaneously — they were simultaneous!” 

According to Einstein’s special theory of relativity, however, 
the answer is not quite so simple. To restate the question more
precisely, are two events that are simultaneous for an observer in
one inertial reference frame simultaneous for observers in all 
inertial reference frames? The answer is no. The constancy of the
speed of light creates problems with the simultaneity of events, 
as the situation in Figure 17.9 illustrates.

In Figure 17.9 (A), observers A and B are seated equidistant
from a light source (S). The light source flashes. Since the light
must travel an equal distance to both observers, they would 
say that they received the flash at exact-
ly the same time, that the arrival of the
flash was simultaneous for both of them.

Now imagine that these two observers
are actually sitting on a railway flatcar
that is moving to the right with velocity
⇀v relative to the ground and to observer
C in Figure 17.9 (B). Observer C makes
two observations. 

1. B is moving away from the point
from which the light was emitted.

2. A is moving toward the point 
from which the light was emitted.

The Basics of the 
Special Theory of Relativity17.2
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• Describe Einstein’s thought
experiments relating to the 
constancy of the speed of 
light in all inertial frames of 
reference, time dilation, and
length contraction.

• simultaneity

• time dilation

• proper time

• dilated time

• length contraction

• proper length

• relativistic speeds

• gamma

 T E R M S
K E Y

O U T C O M E S
S E C T I O N

Do events that appear to be simultaneous 
to observers A and B also appear to be simultaneous to 
observers C and D?

Figure 17.9
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Observer C concludes that it takes longer for light to reach B
than it does to reach A. Thus, according to observer C, observer A
received the flash first and B received it second. The arrivals are
not simultaneous in C’s frame of reference, and yet it is an inertial
reference just as much as is the frame of reference of the flatcar.

In the frame of reference for observer D, who is moving to the
right with a velocity of 2⇀v , the flatcar is moving toward the left
with a velocity of ⇀v . Now, it is A who is moving away from the
point from which the flash was emitted and B is moving toward
that emission point. The light would take longer to reach A, so the
light would arrive at observer B first.

As you can see from this example, the whole concept of simul-
taneity, of past, present, and future, is fuzzy in relativity. What 
is a future event in one frame of reference becomes a past event in
another. This is due entirely to the fact that the speed of light is
the same in all inertial frames of reference, regardless of their 
relative velocities.

Thought Experiment 2: Time Dilation
Imagine yourself back on the hilltop, watching fireworks. You look
at your watch at the moment that the fireworks ignite and it says
11:23 P.M. What do the watches of the passengers in the car read?
If they saw the fireworks ignite at different times, their watches
cannot possibly agree with yours. 

The constancy of the speed of
light creates problems with time
intervals. The term time dilation
applies to situations in which 
time intervals appear different 
to observers in different inertial
frames of reference. To understand
the implications of this constant
speed of light for time measure-
ment, assume that an experimenter
has devised a light clock. In it, a
pulse of light reflects back and forth
between two mirrors, A and B. The
time that it takes for the pulse to
travel between the mirrors is the
basic tick of this clock. Figure 17.10
(A) shows such a “tick.”

Now, picture this clock in a
spacecraft that is speeding past
Earth. An observer in the spacecraft
sees the light as reflecting back and
forth as it was before, so the basic
tick of the clock has not changed.
However, an observer on Earth
would see that the mirrors moved

If the speed of light is the same to all observers, 
then light takes longer to travel from A to B′ than it does to travel 
from A to B.

Figure 17.10
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while the light pulse travelled from A to B, as shown in Figure
17.10 (B). Since the pulse actually has to travel from A to B′ , it
must take longer, as indicated in Figure 17.10 (C). The tick of the
clock therefore takes longer to occur in the Earth frame of refer-
ence than in the spacecraft observer’s frame of reference. In fact, 
if the spacecraft observer was wearing a watch, the Earth observer
would say that the watch was counting out the seconds too slowly.
The spacecraft observer, however, would say that the watch and
the light clock were working properly.

The relationship between times as measured in the spacecraft
and on Earth can be deduced from Figure 17.10 (D). Assume that

■ c is the speed of light, which is the same for all observers

■ ∆t is the time that the Earth observer says it takes for the pulse
to travel between the mirrors

■ ∆to is the time that the spacecraft observer says it takes for the
pulse to travel between the mirrors

The distance from A to B would be c∆to. The distance travelled by
the spacecraft would be v∆t, since this involves a distance, speed,
and time observed by the Earth observer. 

The Earth observer claims that the light pulse actually travelled
a distance of c∆t. These distances represent the lengths of the
sides of a right-angled triangle, as seen in Figure 17.10 (D). Notice
how similar this result is to the arrival-time equation in the 
boat X-boat Y scenario on pages 743 and 744.

In any question involving relativistic times, it is important to
carefully identify the times. 

■ ∆to is the time as measured by a person at rest relative to the
object or the event. It is called the proper time. You could think
of it as the “rest time,” although this term is not generally used.
Another way to picture it is as the “one-point” time, the time for
an observer who sees the clock as staying at only one point.

∆t = ∆to√
1 − v2

c2

■ Solve for ∆t.

∆t2
o = ∆t2

(
1 − v2

c2

)

∆to = ∆t

√
1 − v2

c2

■ Simplify, then take the
square root of both sides
of the equation.

∆t2
o = ∆t2(c2 − v2)

c2
■ Divide by c2.

c2∆t2
o = ∆t2(c2 − v2)■ Factor out a ∆t2.

c2∆t2
o = c2∆t2 − v2∆t2■ Solve for c2∆t2

o.

(c∆t)2 = (c∆to)2 + (v∆t)2

c2∆t2 = c2∆t2
o + v2∆t2

■ Apply the Pythagorean
theorem and expand.
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Relativity
Experiment with near-light speeds
and time dilation by using your
Electronic Learning Partner.

ELECTRONIC
LEARNING PARTNER

Note that the negative square root 
has no meaning in this situation. Both
times will be seen as positive. In addi-
tion, v must be less than c. If it was
greater than c, the denominator would
become the square root of a negative
number. Although such a square root
can be expressed using complex 
numbers, it is not expected that a time
measurement would involve anything
other than the set of real numbers.

Math Link



■ ∆t is the expanded or dilated time. Since the denominator √
1 − v2

c2 is less than one, ∆t is always greater than ∆to. It 

can also be thought of as the “two-point” time, the time as 
measured by an observer who sees the clock as moving between
two points.

Quantity Symbol SI unit
dilated time ∆t s (seconds)

proper time ∆to s (seconds)

velocity of the moving v m
s

(metres per second)
reference frame 

speed of light c m
s

(metres per second)

Unit Analysis

seconds = seconds√
1 −

(
metres
second

)2(
metres

seconds

)2

= seconds s = s√
1 −

(
m
s

)2(
m
s

)2

= s

∆t = ∆to√
1 − v2

c2

DILATED TIME
The dilated time is the quotient of the proper time and the
expression: square root of one minus the velocity of the 
moving reference frame squared divided by the speed of 
light squared. 
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Relative Times
A rocket speeds past an asteroid at 0.800 c. If an observer in
the rocket sees 10.0 s pass on her watch, how long would that
time interval be as seen by an observer on the asteroid?

Frame the Problem
■ Proper time, ∆to, and dilated time, ∆t, are not the same. Time

intervals appear to be shorter to the observer who is moving
at a velocity close to the speed of light.

■ Proper time, ∆to, and dilated time, ∆t, are related by the 
speed of light, c.

MODEL PROBLEM 

Since v
2

c2 is a ratio, the speeds can 

have any units as long as they are
the same for both the numerator
and the denominator. It is often
useful to express v in terms of c.

PROBLEM TIP



Identify the Goal
The amount of time, ∆t, that passes for the observer on the asteroid 
while 10.0 s passes for the observer on the rocket

Variables and Constants
Known Implied Unknown
vrocket = 0.800 c
∆to = 10.0 s

c = 3.00 × 108 m
s

∆t

Strategy Calculations

The time as seen by an observer on the asteroid would be 16.7 s.

Validate
The dilated time is expected to be longer than the proper time, and it is.

1. A tau (τ ) particle has a lifetime measured at
rest in the laboratory of 1.5 × 10−13 s. If it 
is accelerated to 0.950 c , what will be its 
lifetime as measured in (a) the laboratory
frame of reference, and (b) the τ particle’s
frame of reference?

2. A rocket passes by Earth at a speed of
0.300 c . If a person on the rocket takes 

245 s to drink a cup of coffee, according to
his watch, how long would that same event
take according to an observer on Earth?

3. A kaon particle (κ) has a lifetime at rest in 
a laboratory of 1.2 × 10−8 s. At what speed
must it travel to have its lifetime measured
as 3.6 × 10−8 s?

PRACTICE PROBLEMS

∆t = 10.0 s
0.600

∆t = 16.67 s

∆t ≅ 16.7 s

Solve.

∆t = 10.0 s√
1 − (0.800 c)2

c2

Substitute into the equation.

∆t = ∆to√
1 − v2

c2

Select the equation that relates dilated
time to proper time.

Thought Experiment 3: Length Contraction
Imagine the following situation. Captain Quick is a comic book
hero who can run at nearly the speed of light. In her hand, she 
is carrying a flare with a lit fuse set to explode in 1.50 µs
(1.50 × 10−6 s). The flare must be placed into its bracket before 
this happens. The distance (L) between the flare and the bracket 
is 402 m.

Chapter 17  Special Theory of Relativity • MHR 819



A race against time

L = Lo

√
1 − v2

c2

L = (402 m)

√
1 −

( 2
3 c

)2

c2

L = (402 m)(0.7454)

L = 300 m

■ Since Captain Quick and the
fuse are in the same frame of
reference, however, Captain
Quick should observe the fuse
burning in 1.50 µs. How did 
she make it in time? Then she
realized that the only way she
could have arrived in time was
if the distance to the bracket in
her moving frame of reference
was less than the 402 m in the
stationary frame. The distance
must have been multiplied by
the same factor by which the
time was divided in the
observer’s frame of reference.

∆t = ∆to√
1 − v2

c2

∆t = 1.50 × 10−6 s√
1 −

( 2
3 c

)2

c2

∆t = 1.50 × 10−6 s
0.7454

∆t = 2.01 × 10−6 s

■ However, to an observer in the
stationary frame of reference,
the time for the fuse to burn
will be dilated in relation to
his own frame of reference. It
will take 2.01 µs for the fuse to
burn and therefore, Captain
Quick will reach the bracket 
in time.

∆t = L
v

∆t = 402 m
2.00 × 108 m

s

∆t = 2.01 × 10−6 s or 2.01 µs

■ Captain Quick runs at 2
3 c

(2.00 × 108 m/s) and arrives at
the bracket in time. According
to classical mechanics, this
would not be possible because
it should take 2.01 µs as
shown on the right.

Figure 17.11
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This thought experiment illustrates that two ideas go hand in
hand. If two observers are moving relative to each other, then a
time dilation from one observer’s point of view will be balanced
by a corresponding length contraction from the other observer’s
point of view. 

In the box below, Lo represents the proper length, which is the
length as measured by an observer at rest relative to the object or
event and L is the contracted length seen by the moving observer. 

Quantity Symbol SI unit
contracted length L m (metres)

proper length Lo m (metres)

velocity of the moving v m
s

(metres per second)
reference frame 

speed of light c m
s

(metres per second)

Unit Analysis
metres = metres√

1 −
(

metres
second

)2(
metres

seconds

)2

= metres

m = m√
1 −

(
m
s

)2(
m
s

)2

= m

Note: Length contraction applies only to lengths measured
parallel to the direction of the velocity. Lengths measured 
perpendicular to the velocity are not affected.

L = Lo

√
1 − v2

c2

LENGTH CONTRACTION
The contracted length is the product of the proper length and
the expression, square root of one minus the velocity of the
moving reference frame squared divided by the speed of 
light squared. 

∆t = L
v

∆t = 300 m
2.00 × 108 m

s

∆t = 1.50 × 10−6 s or 1.50 µs

■ If the distance was smaller,
then Captain Quick could
make it to the bracket before
the fuse burned out.
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This thought experiment seems to yield strange results that 
go against common experience. However, the results explain a
phenomenon involving a tiny particle called the “mu meson” (or
muon). This particle has a lifetime of 2.2 × 10−6 s and is formed
about 1.0 × 104 m above the surface of Earth, speeding downward
at about 0.998 c. At that speed (according to classical mechanics),
it should travel only about 660 m before decaying into other 
particles, but it is observed in great numbers at Earth’s surface.
The relativistic explanation is that the muon’s lifetime as meas-
ured by Earth-based observers has been dilated as follows.

∆t = ∆to√
1 − v2

c2

∆t = 2.2 × 10−6 s√
1 − (0.998 c)2

c2

∆t = 2.2 × 10−6 s
0.0632

∆t = 3.5 × 10−5 s

The distance travelled becomes

∆d = v∆t

∆d = (0.998)
(
3.00 × 108 m

s

)
(3.5 × 10−5 s)

∆d = 1.0 × 104 m

At that speed, the muon’s lifetime is so expanded (according to
the observers on Earth) that the particle can reach the surface. On
the other hand, the muon sees its own lifetime as unchanged, and
from its frame of reference, Earth’s surface is rushing toward it at
0.998 c. The distance it sees to Earth’s surface is given by

L = Lo

√
1 − v2

c2

L = (1.0 × 104 m)

√
1 − (0.998 c)2

c2

L = (1.0 × 104 m)(0.0632)

L = 632 m

This reduced distance would take a shorter time, given by

∆t = ∆x
v

∆t = 632 m
(0.998)

(
3.0 × 108 m

s

)
∆t = 2.1 × 10−6 s

The muon therefore can reach Earth’s surface before decaying.
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Which Is Correct?
The physicist standing on the surface of Earth claims that the 
lifetime of the muon is 3.5 × 10−5 s and its height above Earth’s
surface is 1.0 × 104 m. From the muon’s point of view, however, its
lifetime is 2.2 × 10−6 s and its height is 632 m. Which is correct?

Both statements are correct. The value of any measurement is
tied to the frame of reference in which that measurement is taken.
Going from one inertial frame of reference to another will involve
differences in the measurement of lengths and times. Normally,
these differences are too small to be observed, but as relative
speeds approach the speed of light, these differences become 
quite apparent.

Gamma Saves Time
When solving problems involving relativistic speeds (speeds
approaching the speed of light), you will often need to calculate 

the value of 1√
1 − v2

c2

. Physicists have assigned the symbol 

gamma (γ ) to this value, or γ = 1√
1 − v2

c2

. Using the γ notation, 

the length and time equations become ∆t = γ ∆to and L = Lo
γ .

Chapter 17  Special Theory of Relativity • MHR 823

Relativistic Lengths
A spacecraft passes Earth at a speed of 2.00 × 108 m/s. If observers on
Earth measure the length of the spacecraft to be 554 m, how long would
it be according to its passengers?

Frame the Problem
■ Length appears to be shorter, or contracted, to the observer who is

moving relative to the object being measured. 

■ The amount of length contraction that occurs is determined by the 
relative speeds of the reference frames of the two observers. 

Identify the Goal
The length of the spacecraft, Lo, as seen by its passengers

Variables and Constants
Known Implied Unknown
v = 2.00 × 108 m

s
L = 554 m

c = 3.00 × 108 m
s

Lo

MODEL PROBLEM 

continued



Strategy Calculations

The length of the spacecraft as seen by its passengers is 743 m.

Validate
The proper length is expected to be longer than the contracted
length, and it is.

4. An asteroid has a long axis of 725 km. A
rocket passes by parallel to the long axis at a
speed of 0.250 c. What will be the length of
the long axis as measured by observers in the
rocket?

5. An electron is moving at 0.95 c parallel to a
metre stick. How long will the metre stick be
in the electron’s frame of reference?

6. A spacecraft passes a spherical space station.
Observers in the spacecraft see the station’s
minimum diameter as 265 m and the 
maximum diameter as 325 m.

(a) How fast is the spacecraft travelling 
relative to the space station?

(b) Why does the station not look like a
sphere to the observers in the spacecraft?

PRACTICE PROBLEMS

Lo = (554 m)(1.342)

Lo ≅ 743 m

Solve.

L = Lo
γ

Lo = Lγ

Use the equation that describes 
length contraction.

γ = 1√
1 − v2

c2

γ = 1√
1 −

(2.00 × 108 m
s )2

(3.00 × 108 m
s )2

γ = 1.342

Calculate gamma.
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Einstein’s equations allow a 
particle to travel faster than light
if it was already travelling faster
than light when it was created.
For such particles (called
“tachyons”), the speed of light
represents the slowest speed
limit. Although the equations say
that tachyons can exist, there is
no evidence that they do. In fact,
no one knows how they would
interact with normal matter.

PHYSICS FILE The Universal Speed Limit
Calculation of expanded times and contracted lengths involve the 

expression 

√
1 − v2

c2 . Since times and lengths are measurements, 

they must be represented by real numbers, so the value under the
square root must be a positive real number. For this to be true, 
v2

c2 < 1. This implies that v < c . If v approaches c, the value of 

gamma approaches infinity. Consider what happens to ∆t when v

approaches c in ∆t = ∆to√
1 − v2

c2

. The denominator approaches zero.

continued from previous page



Division of a non-zero real number by zero is undefined so an
object’s speed must be less than the speed of light.

This speed limit applies only to material objects. Obviously,
light can travel at the speed of light. Also, once a light pulse has
been slowed down by passing into a medium such as water,
objects can travel faster through that medium than can the pulse.
The blue glow (called “Cerenkov radiation”) emanating from water
in which radioactive material is being stored is created by high-
speed electrons (beta particles) that are travelling through 
the water faster than the speed of light through water. This 
phenomenon is sometimes compared to sonic boom, in which 
particles (in the form of a jet airplane) are travelling faster than 
the speed of sound in air.

The blue glow from this storage pool in a nuclear generat-
ing station comes from particles that are travelling through the water faster
than the speed of light through water.

Figure 17.12
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1. (a) Explain what is meant by an iner-
tial frame of reference.

(b) Would a rotating merry-go-round be an
inertial frame of reference? Give reasons
for your answer.

2. Explain the meaning of the terms 
“proper length” and “proper time.”

3. An arrow and a pipe have exactly the
same length when lying side by side on a
table. The arrow is then fired at a relativistic
speed through the pipe, which is still lying

on the table. Determine whether there is a
frame of reference in which the arrow can 

(a) be completely inside the pipe with 
extra pipe at each end

(b) overhang the pipe at each end

Give reasons for your answers.

4. Explain the meaning of the terms
“length contraction” and “time dilation.”

5. Explain why the results of the
Michelson-Morley experiment were so
important.

C

K/U

I

K/U

K/U

17.2 Section Review

continued
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6. (a) In the diagram, two stars (A and B)
are equidistant from a planet (P) and are
at rest relative to that planet. They both
explode into novas at the same time,
according to an observer on the planet.
From the point of view of passengers in
a rocket ship travelling past at relativis-
tic speeds, however, which star went
nova first? Give reasons for your answer.

(b) Where could the observer stand on the
planet in order to see both stars at the
same time?

7. Part (A) of the diagram shows a star
(S) located at the midpoint between two
planets (A) and (B), which are at rest rela-
tive to the star. The star explodes into a
supernova.

(a) In the frame of reference of the planets,
which planet saw the supernova first?
Give reasons for your answer.

(b) A spacecraft is passing by as shown in
part (B). In its frame of reference, the
star and planets are moving as shown in
part (C). In the spacecraft frame of refer-
ence, which planet saw the supernova
first? Give reasons for your answer.

8. (a) Imagine that you are riding along on
a motorcycle at 22 m/s and throw a ball
ahead of you with a speed of 35 m/s.

What will be the speed of that ball 
relative to the ground?

(b) If the velocity of the motorcycle relative
to the ground is vmg, the velocity of the
ball relative to the motorcycle is vbm,
and the velocity of the ball relative to
the ground is vbg, state the vector equa-
tion for calculating the velocity of the
ball relative to the ground.

(c) Apply this formula to a situation in
which the motorcycle is travelling at
0.60 c and the ball is thrown forward
with a speed of 0.80 c. What is the
speed of the ball relative to the ground?
What is wrong with this answer?

(d) In the special theory of relativity, the
formula for adding these velocities is

vbg = vbm + vmg

1 + vbm · vmg

c2

• What does this formula predict for the
answer to (c)?

• What does this formula predict for the
answer to (a)?

• Imagine that you are travelling in
your car at a speed of 0.60 c and you
shine a light beam ahead of you that
travels away from you at a speed of c.
According to this formula, what
would be the speed of that light beam
relative to the ground?

I
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C
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A BP

A BP

x x

v

K/U

How would the general public have received
the new information in Einstein’s special 
theory of relativity?
■ Do you believe that at the turn of the 

twentieth century society had more or
less faith in science than people do today?
Why or why not?

■ Dramatic events often steer thinking into
new directions. Do you believe that
Einstein was affected by any one particu-
lar event as he developed his theories?

■ Are you able to link recent societal events
with current changes in the direction of 
scientific research?

UNIT PROJECT PREP

continued from previous page
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CAREERS IN PHYSICS

Not Even the Sky’s the Limit!
When a signal leaves a satellite or interplanetary
space probe, a special code is embedded in it to
give it a time-stamp. When the signal is picked up
on Earth, that time-stamp is compared to a terres-
trial clock. Subtracting the two gives the travel time
between the satellite or space probe and the
ground station. Since the signal travels at the
speed of light, all you should need to do then is
multiply the time by c to determine the distance —
but it’s not that simple.

Gravity is part of the problem. According to
Einstein’s general theory of relativity, clocks run
more slowly in a gravitational field. The stronger
the field is, the slower the clocks run. Clocks on
board spacecraft and satellites run slightly faster 
in interplanetary space than they do near Earth.
These timing differences result in distance 
measurement differences between what is
observed from a ground station and from a 
spacecraft. The situation becomes even more 
complicated as the spacecraft dips into and 
out of the gravitational fields of planets that it
encounters on its voyage. 

A second problem results from the relative
velocity between the spacecraft and the ground
station. Einstein’s special theory of relativity, 
discussed in detail in this chapter, describes how
time intervals and distance measurements vary
between inertial frames of reference that are in
motion relative to each other. This relative velocity
is continually changing as a result of the gravity of
the Sun and planets and due to Earth’s orbital and
rotational velocities. Relativistic corrections —
numerical adjustments based on the theory of 
relativity — are an ongoing challenge in spacecraft
instrument design.

There are “a whole suite of careers that utilize
these things,” Steve Lichten, manager of the
Tracking Systems and Applications Section of
NASA’s Jet Propulsion Laboratory, says of 
relativity. Einsteinian physics is no longer the sole
property of university researchers. Commercial
satellite manufacturers must have an understand-
ing of relativity in order for their products to work. 

Theoreticians, engineers, and computer 
scientists must work together to help a spacecraft 
communicate with its ground station, so the 
companies that manufacture spacecraft and 
commercial satellites are always on the lookout for
people with the necessary knowledge. Generally,
an advanced graduate degree in engineering,
physics, or mathematics is preferred, although a
bachelor’s degree in science with a demonstrated
understanding of the concepts and techniques
involved will go a long way. 

So brush up your math skills and keep doing
those thought experiments. Some day, they might
take you to the stars!

Going Further
1. Describe some examples of satellites that

require extremely precise distance and time
measurements. Explain why such precision 
is necessary for those satellites.

2. Many companies that manufacture satellites or
equipment for use on satellites (including space
stations) offer summer internship programs for
interested students. Find out if any of these
companies are located near you and call them.
You might be able to get a head start on a 
great career!

3. Research the space probes, such as the one
shown in the photograph, that are currently
active. Explain why precise knowledge of 
time intervals and distances is of extreme
importance to the operation of space probes.

www.mcgrawhill/ca/links/atlphysics

For information about the NASA Jet Propulsion
Laboratory’s past, current, and planned space missions,
go to the above Internet site and click on Web Links.

Web Link


