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• Define and describe the 
concepts and units related to
electric and gravitational fields.

• Apply the concept of electric
potential energy and compare
the characteristics of electric
potential energy with those of
gravitational potential energy.

• electric potential difference

• equipotential surface

 T E R M S
K E Y

O U T C O M E S
S E C T I O N Did you know that it takes almost 10 t of fuel for a large passenger

jet to take off? It is hard to even imagine the amount of energy
required for a rocket or space shuttle to lift off. How do the 
engineers and scientists determine these values?

The energy to hurl this spacecraft into 
orbit comes from the chemical potential energy of the fuel.

Work for Lift-Off
One way to determine the amount of energy needed to carry out a
particular task is to determine the amount of work that you would
have to do. When a spacecraft is lifting off from Earth, the force
against which it must do work is the force of gravity. 

In Chapter 12, Universal Gravitation, you learned that the equa-

tion for the gravitational force is Fg = G m1m2
r2 . When working with

a planet and a small object, physicists often use M for the planet
and m for the small object. You can then write the equation as

Fg = G Mm
r2 . In Chapter 6, you learned how to find the amount of

work done by finding the area under the curve of a force versus

Figure 14.14

Gravity and Orbiting Spacecraft
Many people believe that gravity
does not act on orbiting space-
craft. In fact, a satellite such as
the International Space Station
Freedom still has about 80% of 
its initial weight. The impression
of weightlessness comes from
the fact that the weight is being
used to hold the space station in
its orbit. If there was no weight, it
would simply continue to move
off into space.

MISCONCEPTION
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Wtotal =
√
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√

FbFd(d − b) +
√

FdF2(r2 − d)

Wtotal =
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GMm
r1

2 · GMm
b2 (b − r1) +

√
GMm

b2 · GMm
d2 (d − b) +

√
GMm

d2 · GMm
r2

2 (r2 − d)

Wtotal = GMm
r1b

(b − r1) + GMm
bd

(d − b) + GMm
dr2

(r2 − d)

Wtotal = GMm
( b − r1

r1b
+ d − b

bd
+ r2 − d

dr2

)
Wtotal = GMm

( 1
r1

− 1
b

+ 1
b

− 1
d

+ 1
d

− 1
r2

)
Wtotal = GMm

( 1
r1

− 1
r2

)

■ You could simplify this equation if
you could express the forces in terms
of the points on the curve at the ends
of the rectangles, instead of the centre.
For example, how can you express Fa

in terms of F1 and Fb? Clearly, Fa is
not the average or arithmetic mean of
F1 and Fb, because the curve is an
exponential curve. However, it can be
accurately expressed as the geometric
mean, which is expressed as 

√
F1Fb.

Substitute the geometric mean of each
value for force into the equation for
work. Notice that in the last step, all
intermediate terms have cancelled
each other and only the first and last
terms remain.

Wtotal = We + Wc + Wa

Wtotal = Fa(b − r1) + Fc(d − b) + Fe(r2 − d)

■ A first rough estimate of the total
work done to move m from r1 to r2

will be the sum of the areas of the 
rectangles.

Position

F
or

ce

Fe

F2

Fd

Fc

Fb

Fa

F1

a b c d er1 r2

■ Draw a graph of gravitational force
versus position, where the origin of
the graph lies at the centre of the
planet. 

■ Choose points r1 and r2. Divide the
axis between r1 and r2 into six equal
spaces and label the end point “a”
through “e.”

■ Draw three rectangles with heights Fa,
Fc, and Fe.

position graph. If you were an engineer working for the space 
program, you would want a much more accurate value before you
launched a spacecraft. In the following derivation, you will develop
a general expression for the area under the curve of Fg versus r
from position r1 to r2. This area will be the amount of work needed
to raise an object such as a spacecraft of mass m from a distance r1

to a distance r2 from the centre of a planet of mass M. 
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r1 r2
Position

F
or

ce

■ At first consideration, this result
would appear to be a rough estimate.
However, consider the fact that you
could make as many rectangles as 
you want. Examination of the figure
on the right shows that as the number
of rectangles increases, the sum of
their areas becomes very close to the
true area under the curve. If you drew
an infinite number of rectangles, your
result would be precise. Now, analyze
the last two mathematical steps above.
No matter how many rectangles you
drew, all of the intermediate terms
would cancel and the result would be
exactly the same as the result above.
In this case, the result above is not an
approximation but is, in fact, exact.

Gravitational Potential Energy
In Chapter 7, Conservation of Energy and Momentum, you demon-
strated that the change in the gravitational potential energy of an
object was equal to the work done in raising the object from one
height to another. That relationship (W = mg∆h ) was the special
case, where any change in height was very close to Earth’s surface.
Since you are now dealing with objects being launched into space,
you cannot use the special case. You must consider the change in
the force of gravity as the distance from Earth increases.
Fortunately, however, you have already developed an expression
for the amount of work required to lift an object from a distance r1

to a distance r2 from Earth’s centre. Therefore, the result of your
derivation is equal to the change in the gravitational potential
energy between those two positions. 

∆Eg = GMm
( 1

r1
− 1

r2

)
As you know, you must choose a reference point for all forms 

of potential energy. Earth’s surface in no longer an appropriate 
reference, because you are measuring distances from Earth’s centre
to deep into space. Physicists have accepted the convention of
assigning the reference or zero point for gravitational potential
energy as an infinite distance from the centre of the planet or other
celestial body that is exerting the gravitational force on the object
of mass m. This is appropriate because at an infinite distance, the
gravitational force goes to zero. You can now state that the gravita-
tional potential energy of an object at a distance r2 from Earth’s
centre is the amount of work required to move an object from an
infinite distance, r1, to r2.



Eg = GMm
( 1

∞ − 1
r2

)
Eg = GMm

(
0 − 1

r2

)
Eg = − GMm

r2

Since there is only one distance (r2) in the equation, it is often
written without a subscript. Notice, also, that the value is negative.
This is simply a result of the arbitrary choice of an infinite distance
for the reference position. You will discover as you work with the
concept that this reference point was very carefully chosen.

Quantity Symbol SI unit

gravitational potential
energy Eg J (joules)

universal gravitational
constant G N · m2

kg2 (newton metres
squared per
kilograms
squared)

mass of the planet or
celestial body M kg (kilograms)

mass of the object m kg (kilograms)

distance from centre of
planet or celestial body r m (metres)

Unit Analysis

joule =
newton · metre2

kilogram2 · kilogram · kilogram

metre

J =
N · m2

kg2 · kg · kg

m
= N · m = J

Note: Use of this equation implies that the reference or zero
position is an infinite distance from the planet or celestial body.

Eg = − GMm
r

GRAVITATIONAL POTENTIAL ENERGY
The gravitational potential energy of an object is the negative
of the product of the universal gravitational constant, the mass
of the planet or celestial body, and the mass of the object,
divided by the distance from the centre of the planet or 
celestial body.
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It might seem odd that the potential energy is always negative.
Since changes in energy are always of interest, however, these
changes will be the same, regardless of the location of the zero
level. 

To illustrate this concept, consider the houses in the Loire
Valley in France that are carved out of the face of limestone cliffs.
To the person on the cobblestone street, everyone on floors A, B,
and C in Figure 14.15(A) would have positive gravitational energy,
due to their height above the street. However, to a person on floor
B, those on floor A are at a negative height, and so have negative
gravitational potential energy relative to them. At the same time,
the person on floor B would consider that people on floor C would
have a positive gravitational potential energy because they are
higher up the cliff.

Naturally, the person standing on the roof beside the chimney
would consider that everyone in the house had negative gravita-
tional potential energy. All of the residents would agree, however,
on the amount of work that it took to carry a chair up from floor A
to floor C, so the energy change would remain the same, regardless
of the observer’s level. At the same time, a book dropped from a
window in floor B would hit the ground with the same kinetic
energy, regardless of the location of the zero level for gravitational
potential energy.

Figure 14.16 is a graph of the gravitational potential energy of 
a 1.0 kg object as it moves away from Earth’s surface. Since work
must be done on that object to increase the separation, the object
is often referred to as being in a gravitational potential energy
“well.”
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C

B

A

Some houses in 
the Loire Valley are carved out 
of limestone cliffs.

Figure 14.15



Since work must be done on the 1.0 kg object to move it
away from Earth, although the gravitational potential energy is always 
negative, it is increasing (becoming less negative) as it retreats farther 
and farther from Earth.

Electric Potential Energy
As a thundercloud billows, rising ice crystals collide with falling
hailstones. The hail strips electrons from the rising ice and the top
of the cloud becomes predominantly positive, while the bottom 
is mostly negative. Negative charges in the lower cloud repel 
negative charges on the ground, inducing a positive region, or
“shadow,” on Earth below. Electric fields build and a spark ignites
a cloud-to-ground lightning flash through a potential difference 
of hundreds of millions of volts. 

The lightning bolt featured in Figure 14.17 dramatically demon-
strates that when a charge is placed in an electric field, it will
move. The potential to move implies the existence of stored energy.

Tremendous amounts of electric energy are “stored” in the
electric fields created by the separation of charge between thunderclouds
and the ground. This energy is often released in the “explosion” of a 
lightning bolt.

Figure 14.17

Figure 14.16
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Previously, you derived an equation for the gravitational potential
energy of one mass due to the presence of a central mass. You
started the derivation by determining the amount of work that you
would have to do on the first mass to move it from a distance r1 to
a distance r2 from a central mass. Then you learned that physicists
have agreed on a reference position that is assigned a value of zero
gravitational potential energy. That distance is infinitely far from
the central mass. In this application, an infinite distance means so
far away that the magnitude of the force of gravity is negligible.

Physicists take the same approach in developing the concept of
electric potential energy of a charge q1 in the vicinity of another
charge q2 as shown in Figure 14.18. The change in electric potential
energy of charge q1 due to the presence of q2, in moving q1 from 
r1 to r2, is the work that you would have to do on the charge in
moving it. In Figure 14.19, note the similarities in the equations for
the force of gravity and the Coulomb force as well as the curves 
for force versus position.

The Coulomb force and the force of gravity both follow
inverse square relationships, so the curves of force versus position have
exactly the same form.

Since the two equations and the two curves have identical
mathematical forms, the result of the derivation of the change in
the electric potential energy in moving a charge will be mathemat-
ically identical to the form of the change in the gravitational
potential energy in moving a mass from position r1 to position r2.

∆Eg = GMm
r1

− GMm
r2

∆EQ = kq1q2

r1
− kq1q2

r2

Figure 14.19

r1

Fg

r2 r r1

FQ

r2 r

Fg = G Mm
r2 FQ = k q1q2

r2

−q1

A

r1
+q2

B

+q2

C

r2
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By doing
work on charge q2, you
give it potential energy.

Figure 14.18



When working with point charges, the choice of a reference
position for electric potential energy is the same as that for gravita-
tional potential energy — an infinite distance — so far apart that
the force between the two charges is negligible. Therefore, the
equations for potential energy have the same mathematical form,
with one small difference: There is no negative sign in the equation
for the electric potential energy.

Eg = −GMm
r

EQ = kq1q2

r

The negative sign is absent from the equation for electric poten-
tial energy, because the energy might be negative or positive,
depending on the sign of the charges. If the charges have opposite
signs, the Coulomb force between them is attractive. Consequently,
if one charge moves from infinity to a distance r from the second
charge, it does work and therefore has less potential energy. Less
than zero is negative. If the charges have the same sign, you must
do work on one charge to move it from infinity to a distance r from
the second charge, and therefore it has positive potential energy. 
If you include the sign of the charges when using the equation for
electric potential energy, the final sign will tell you whether the
potential is positive or negative. 

A second difference between electric potential energy and 
gravitational potential energy is that the two interacting charges
might be similar in magnitude. Therefore, either charge could be
considered the stationary or central charge, or the “movable”
charge. You could therefore consider the two charges to be a 
system, and refer to the electric potential energy of the system 
that results from the proximity of the two charges.

The product q1q2 is
negative, so the charges
have negative potential
energy when they are a
distance r apart.

EQ = k(+q1)(−q2)
r

EQ < 0

■ A positive and a 
negative charge.

Both q1 and q2 are 
negative, so the charges
have positive potential
energy when they are a
distance r apart.

EQ = k(−q1)(−q2)
r

EQ > 0

■ Two negative
charges 

Both q1 and q2 are 
positive, so the charges
have positive potential
energy when they are a
distance r apart.

EQ = k(+q1)(+q2)
r

EQ > 0

■ Two positive
charges 
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Electric Potential Energy
What is the electric potential energy stored between charges of +8.0 µC and
+5.0 µC that are separated by 20.0 cm?

Frame the Problem
■ Two charges are close together and therefore they exert a force on each other.

■ Work must be done on or to the charges in order to bring them close to 
each other.

■ Since work was done on a charge, it has positive electric potential energy.

Identify the Goal
The electric potential energy, EQ, stored between the charges

Variables and Constants
Known Implied Unknown
q1 = 8.0 × 10−6 C
q2 = 5.0 × 10−6 C
r = 0.200 m

k = 9.0 × 109 N · m2

C2 EQ

Strategy Calculations

The electric potential energy stored in the field between the charges is +1.8 J.

Validate
Magnitudes seem to be consistent. The units cancel to give J: 
N · m2

C2 · C · C
m

= N · m = J . The sign is positive, indicating that the 

electric potential energy is positive. A positive sign is correct for
like charges, because work was done on the charges to put them
close each other.

38. Find the electric potential energy stored
between charges of +2.6 µC and −3.2 µC
placed 1.60 m apart.

39. Two identical charges of +2.0 µC are placed
10.0 cm apart in a vacuum. If they are
released, what will be the final kinetic energy
of each charged object (assuming that no
other objects or fields interfere)?

PRACTICE PROBLEMS

EQ = k q1q2

r

EQ =

(
9.0 × 109 N · m2

C2

)
(+8.0 × 10−6 C)(+5.0 × 10−6 C)

0.200 m
EQ = +1.8 J

Write the equation for electric potential
energy between two charges.

Substitute numerical values and solve. 

MODEL PROBLEM 
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40. How far apart must two charges of
+4.2 × 10−4 C and −2.7 × 10−4 C be placed 
in order to have an electric potential energy
with a magnitude of 2.0 J?

41. Two charges of equal magnitude, separated
by a distance of 82.2 cm, have an electric
potential energy of 2.64 × 102 J. What are the
signs and magnitudes of the two charges?

CAREERS IN PHYSICS

Seeing Inside Storms
Blizzards can cause traffic accidents. Hurricanes
can cause flooding. Tornadoes can destroy houses.
Often, advance warning of these and other severe
storms helps prevent deaths and reduce damage.
For example, radio announcements can warn
motorists to stay off roads, and municipal authori-
ties can prepare to deal with possible flooding.

Giving advance warning is part of Dr. Paul Joe’s
work. Dr. Joe, a radar scientist and cloud physicist,
is based at Environment Canada’s radar site in
King City, north of Toronto. Radar — short for radio
detection and ranging — involves transmitting
pulses of electromagnetic waves from an antenna.
When objects such as snowflakes or raindrops
interrupt these pulses, part of their electromagnetic
energy is reflected back. A receiver picks up the
reflections, converting them into a visible form and
indicating a storm’s location and intensity. 

Conventional radar cannot detect a storm’s
internal motions, however. This is why, in recent
years, Environment Canada has been improving 
its radar sites across the country by adding
Doppler capability. This improved radar technology
applies the Doppler effect: If an object is moving
toward the radar, the frequency of its reflected
energy is increased from the frequency of the 

energy that the radar is transmitting. If an object 
is moving away from the radar, the frequency of 
its reflected energy is decreased.

“This is the same effect we notice with a sub-
way train,” Dr. Joe explains. “As it approaches, we
hear a higher-pitched sound than when it leaves.”

On Dr. Joe’s radar screen, the frequency shifts
are visualized using colours. In general, blue
means an object is approaching; red means it is
receding. But it’s not that simple. Doppler images
are complex and difficult for conventional weather
forecasters to interpret, and Dr. Joe is working on
ways to make them simpler. He also specializes 
in nowcasting — forecasting weather for the near
future; for example, within an hour. As part of the
2000 Olympics, he went to Sydney, Australia, to
join other scientists in demonstrating nowcasting
technologies.

“I have it great,” says Dr. Joe. “I love using
what I’ve learned in mathematics, physics, and
meteorology to decipher what Mother Nature is
telling us and warning people about what she
might do. Using the radar network, I can be 
everywhere chasing storms and seeing inside
them in cyberspace.”

Going Further
Dr. Joe’s field, known in general as meteorology,
includes radar science, cloud physics, climatology,
and hydrometeorology. Research one of these
fields and prepare a two-page report for 
presentation to the class. 

Dr. Paul Joe, 
radar scientist and
cloud physicist

www.mcgrawhill.ca/links/atlphysics

The Canadian Hurricane Centre site maintained on the
Internet by Environment Canada has a wide variety of
information about hurricanes. Just go to the above Internet
site and click on Web Links.

Web Link



Electric Potential Difference
In section 14.1, you learned how to describe the intensity of a field
at any point in that field. You are now learning how to describe the
potential energy of an object in a field relative to some arbitrarily
assigned reference point. Physicists have concluded that it would be
convenient to be able to describe electric fields in terms of potential
energy in a more general way. They have defined the electric
potential difference as the potential energy that a unit charge
would have if it were placed at a particular point in a field. This
concept allows you to describe the condition of a point in a field
without placing a charge at that point.

You have just derived an equation for the electric potential 
energy of a point charge, relative to infinity, a distance r from
another point charge that can be considered as having created the
field. For this case, you can find the electric potential difference
between that point and infinity by considering the charge q1 as the
charge creating an electric field and q2 as a unit charge.

V = k q
r

ELECTRIC POTENTIAL DIFFERENCE DUE TO A POINT CHARGE
The electric potential difference between any point in the
field surrounding a point charge and the reference point at
infinity is the product of Coulomb’s constant and the electric
charge divided by the distance from the centre of the charge 
to the point.

V = kq
r

■ Since only one q, the charge creating the
field, remains in the expression, there is no
need for a subscript. 

V =
kq1q2

r
q2

■ Substitute the expression for the difference in
electric potential energy of charge q2 between
the reference at infinity and the distance r
from the charge q1 due to the presence of q1. 

V = EQ

q2

■ The definition of electric potential difference
between a point and the reference point is
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Problems involving electric potential difference can be extend-
ed, as can those involving electric field, to situations in which 
several source charges create an electric field. Since electric 
potential is a scalar quantity, the electric potential difference 
created by each individual charge is first calculated, being careful
to use the correct sign, and then these scalar quantities are added
algebraically.

You can go one step further and describe the electric potential
difference between two points, P1 and P2 , within a field. To avoid
confusion, this quantity is symbolized ∆V and the relationship is
written as follows. 

∆V = V2 − V1

Always keep in mind that V1 and V2 represent the electric
potential difference between point 1 and infinity, and point 2 and
infinity — a location so far away that the field is negligible. The
following sample problems will help you to clarify these concepts
in your mind.

Quantity Symbol SI unit
electric potential V V (volts)
difference

Coulomb’s constant k N · m2

C2 (newton metres squared
per coulombs squared)

electric charge q C (coulombs)

distance r m (metres)

Unit Analysis
N · m2 · C

C2 · m
= N · m

C
= J

C
= V

Note: Electric potential difference is a scalar quantity.

Physicists often use the phrase,
potential at a point, when they
are referring to the potential 
difference between that point 
and the reference point an infinite 
distance away. It is not incorrect
to use the phrase as long as you
understand its meaning.

PHYSICS FILE

Calculations Involving Electric Potential Difference
1. A small sphere with a charge of −3.0 µ C creates 

an electric field.

(a) Calculate the electric potential difference at 
point A, located 2.0 cm from the source charge,
and at point B, located 5.0 cm from the same
source charge.

(b) What is the potential difference between A and B?

(c) Which point is at the higher potential?

A

B

−3.0 µC

2.0 cm

5.0 cm

MODEL PROBLEMS
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Frame the Problem
■ A charged sphere creates an electric field.

■ At any point in the field, you can describe an electric potential differ-
ence between that point and a location an infinite distance away.

■ Electric potential difference is a scalar quantity and depends only on
the distance from the source charge and not the direction.

■ The potential difference between two points is the algebraic difference
between the individual potential differences of the points.

Identify the Goal
The electric potential difference, V, at each point
The electric potential difference, ∆V, between the two points
The point at a higher potential

Variables and Constants
Known Implied Unknown

q = −3.0 × 10−6 C
dA = 2.0 × 10−2 m
dB = 5.0 × 10−2 m

k = 9.0 × 109 N · m2

C2 VA

VB

∆V

Strategy Calculations

(a) The electric potential difference is −1.4 × 106 V at point A, and
−5.4 × 105 V at point B.

(b) The electric potential difference, ∆V, between points A and B 
is 8.1 × 105 V.

∆V = VB − VA

∆V = (−5.4 × 105 V) − (−1.35 × 106 V)

∆V = 8.1 × 105 V

Use algebraic subtraction to determine the 
potential difference between the two points.

VA = k q
dA

VA =
(
9.0 × 109 N · m

C2

)( −3.0 × 10−6 C
2.0 × 10−2 m

)
VA = −1.35 × 106 V

VA ≅ − 1.4 × 106 V

VB = k q
dB

VB =
(
9.0 × 109 N · m

C2

)( −3.0 × 10−6 C
5.0 × 10−2 m

)
VB = −5.4 × 105 V

Use the equation for the electric potential differ-
ence at a point a distance r from a point charge.

Substitute numerical values and solve.
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(c) Point B is at the higher potential.

Validate
The more distant point has a smaller magnitude potential, but 
its negative sign makes it a higher value. The analysis with a 
positive test charge validates the statement of higher potential.

Note: The diagram shows two possible paths a test charge 
could take in moving from B to A. If the test charge followed
the path BCA, no work would be done between B and C,
because the force would be perpendicular to the path. 

The only segment of the path where work is done by a positive
test charge, and therefore the electric potential energy changes,
is from C to A, parallel to the direction in which the force is acting.

2. The diagram shows three charges, A (+5.0 µC), 
B (−7.0 µC), and C (+2.0 µC), placed at three 
corners of a rectangle. Point D is the fourth 
corner. What is the electric potential difference
between point D and the reference at infinity?

Frame the Problem
■ There is an electric potential difference between

point D, and the reference point due to each of the 
separate charges.

■ The separate values of potential difference can be 
calculated and then added algebraically.

Identify the Goal
The electric potential difference, V, between point D and the 
reference at infinity

Variables and Constants
Known Implied Unknown
qA = 5.0 µC
qB = −7.0 µC
qC = 2.0 µC
dAB = 6.0 cm
dAD = 3.0 cm

k = 9.0 × 109 N · m2

C2

dCD = 6.0 cm

Vat D

6.0 cm

3.0 cm

BA

D C

+5.0 µC −7.0 µC

+2.0 µC

5 cm

2 cm
A

C

B

−3.0 µC

Algebraically, since (VB − VA) > 0, VB is at the
higher potential.

A positive test charge placed at point A
would have to be dragged against the electric
forces to get it to point B, which again places
point B at the higher potential.

Analyze the algebraic result and validate by 
considering the path of a positive test charge.
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Strategy Calculations

The electric potential difference at point D is 8.6 × 105 V.

Validate
The electric potential difference contributed by A is expected to be
stronger, due to its closer proximity and average charge.

3. A charge of +6.0 µC at point A is separated 10.0 cm
from a charge of −2.0 µC at point B. At what locations
on the line that passes through the two charges will
the total electric potential be zero?

Frame the Problem
■ The total electric potential due to the combination 

of charges is the algebraic sum of the electric potential
due to each point alone.

■ Draw a diagram and assess the likely position.

■ Let the points be designated a distance d to the right of
point A, and set the absolute magnitudes of the potential
equal to each other. This allows for two algebraic scenarios.

Identify the Goal
The location of the point of zero total electric potential

Variables and Constants
Known Implied Unknown

qA = +6.00 × 10−6 C
qB = −2.00 × 10−6 C

dAB = 10.0 × 10−2 m

k = 9.0 × 109 N · m2

C2 d at zero total electric potential

10.0 cm

P
+6.0 µC −2.0 µC

d
(10.0 − d)

BA

10.0 cm

+6.0 µC −2.0 µC

BA

Vat D = (1.5 × 106 V) + (−9.4 × 105 V) + (3.0 × 105 V)

Vat D = 8.6 × 105 V

Calculate the net potential difference
at point D by adding the separate
potential differences algebraically.

VA at D =
(
9.0 × 109 N · m2

C2

)( +5.0 × 10−6 C
0.030 m

)
= 1.5 × 106 V

VB at D =
(
9.0 × 109 N · m2

C2

)( −7.0 × 10−6 C
0.067 m

)
= −9.4 × 105 V

VC at D =
(
9.0 × 109 N · m2

C2

)( +2.0 × 10−6 C
0.060 m

)
= 3.0 × 105 V

Calculate the contribution of each
charge to the potential difference at
point D independently.

d2
BD = (6.0 cm)2 + (3.0 cm)2

d2
BD = 45 cm2

dBD = ±
√

45 cm2

dBD = ±6.7 cm

Calculate dBD, using the Pythagorean
theorem. Choose the positive value
as a measure of the real distance.
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Strategy Calculations

The points of zero potential are 7.5 cm to the right of point A and
5.0 cm to the right of point B. (Note: 15 cm to the right of A is the
same as 5 cm to the right of B.)

Validate
The electric potentials due to point A at the two points are

(9.0 × 109)
( +6.0 × 10−6

0.075

)
= +7.2 × 105 V and (9.0 × 109)

( +6.0 × 10−6

0.15

)
= +3.6 × 105 V

The electric potentials due to point B at the two points are

(9.0 × 109)
( −2.0 × 10−6

0.025

)
= −7.2 × 105 V and (9.0 × 109)

( −2.0 × 10−6

0.050

)
= −3.6 × 105 V

In both locations, the potentials due to points A and B add algebraically to zero.

Scenario 2

k qA

d
= −k qB

(0.10 − d)

qA(0.10 − d) = −qB(d)

0.10qA − qAd = −qBd

0.10qA = d(qA − qB)

d = 0.10qA

qA − qB

d = (0.10 m)(6.0 µC)
6.0 µC − (−2.0 µC)

d = 0.60 m · µC
8.0 µC

d = 0.075 m

∣∣Vdue to A
∣∣ =

∣∣Vdue to B
∣∣

Scenario 1

k qA

d
= k qB

(0.10 − d)

qA(0.10 − d) = qB(d)

0.10qA − qAd = qBd

0.10qA = d(qA + qB)

d = 0.10qA

qA + qB

d = (0.10 m)(6.0 µC)
6.0 µC + (−2.0 µC)

d = 0.60 m · µC
4.0 µC

d = 0.15 m

For the potentials to cancel algebraically, the
point cannot be to the left of point A, which
would be closer to the larger positive charge
and could not be balanced by the potential of
the negative charge. That leaves two locations:
one between points A and B, and one to the
right of point B, where the smaller distance 
to the negative charge balances the smaller
value of that charge.
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PRACTICE PROBLEMS
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42. Find the electric field due to a point charge of
4.2 × 10−7 C at a point 2.8 cm from the charge.

43. How far from a positive point source of 
8.2 C will the electric potential difference be
5.0 V? (Note: 8.2 C is a very large charge!)

44. The electric potential difference due to a
point charge is 4.8 V at a distance of 4.2 cm
from the charge. What will be the electric
potential energy of the system if a second
charge of +6.0 µC is placed at that location?

45. The electric potential difference at a distance
of 15 mm from a point charge is –2.8 V. What
is the magnitude and sign of the charge?

46. Point charges of +8.0 µC and −5.0 µC, respec-
tively, are placed 10.0 cm apart in a vacuum.
At what location along the line between their
centres will the electric potential difference
be zero?

47. What is the potential difference at point P
situated between the charges +9.0 µC and
−2.0 µC, as shown in the diagram.

48. Point X has an electric potential difference of
+ 4.8 V and point Y has a potential difference
of –3.2 V. What is the electric potential 
difference, ∆V, between them?

49. Charges of +2.0 µC, −4.0 µC, and −8.0 µC are
placed at three vertices of a square, as shown
in the diagram. Calculate the electric poten-
tial difference at M, the midpoint of the 
diagonal AC. 

50. The diagram shows three small charges 
located on the axes of a Cartesian coordinate
system. Calculate the potential difference 
at point P.

51. Two charges are placed at the corners of a
square. One charge, +4.0 µC, is fixed to one
corner and another, −6.0 µC, is fixed to the
opposite corner. What charge would need to
be placed at the intersection of the diagonals
of the square in order to make the potential
difference zero at each of the two unoccu-
pied corners?

52. Point A has an electric potential difference 
of + 6.0 V. When a charge of 2.0 C is moved
from point B to point A, 8.0 J of work are
done on the charge. What was the electric
potential difference of point B?

53. The potential difference between points X
and Y is 12.0 V. If a charge of 1.0 C is
released from the point of higher potential
and allowed to move freely to the point of
lower potential, how many joules of kinetic
energy will it have?

54. Identical charges of +2.0 µC are placed at 
the four vertices of a square of sides 10.0 cm.
What is the potential difference between the
point at the intersection of the diagonals 
and the midpoint of one of the sides of the
square?

55. (a) If 6.2 × 10−4 J of work are required 
to move a charge of 3.2 nC (one
nanocoulomb = 10−9 coulombs) from 
point B to point A in an electric field,
what is the potential difference between 
A and B?

P

−18.0 µC

+4.2 µC +8.0 µC

(+2.0 cm)(−3.0 cm)

(+5.0 cm)

A

B C

D

M

+2.0 µC

−4.0 µC −8.0 µC

6.0 cm

4.0 cm

P
+9.0 µC −2.0 µC

2.0 cm
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• In practice problem 56, do you think there could be locations
(other than along a line joining the two charges) where the 
electric potential difference could be the same, but not zero?
Explain.

Equipotential Surfaces
The quantities of gravitational potential energy, electric potential
energy, and electric potential difference are all scalar quantities.
Although it is rarely used, there is also a quantity called “gravita-
tional potential difference,” which is defined as gravitational
potential energy per unit mass. It is expressed mathematically as 

Vg = Eg

m
= −GM

r
. Since these are scalar quantities, the direction 

from the charge or mass that is creating the field does not affect
the values. If you connected all of the points that are equidistant
from a point mass or an isolated point charge, they would have the
same potential difference and they would be creating a spherical
surface. Such a surface, illustrated in Figure 14.20, is called an
equipotential surface.

Conceptual Problem
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(b) How much work would have been
required to move a 6.4 nC charge instead?

(c) Which point is at the higher electric
potential? Explain.

56. Two different charges are placed 8.0 cm
apart, as shown in the diagram. Calculate 
the location of the two positions along a line
joining the two charges, where the electric
potential is zero.

57. A charge of +8.2 nC is 10.0 cm to the left of a
charge of –8.2 nC. Calculate the locations of
three points, all of which are at zero electric
potential.

58. A charge of −6.0 µC is located at the origin of
a set of Cartesian coordinates. A charge of
+8.0 µC. is 8.0 cm above it. What are the
coordinates of the points at which the 
potential is zero?

59. A charge of +4.0 µC is 8.0 cm to the left of 
a point that has zero potential. Calculate
three possible values for the magnitude and
location of a second charge causing the
potential to be zero.

60. Calculate the location of point B in the 
diagram below so that its electric potential 
is zero.

6.0 cm

−4.0 µC +2.0 µC
B

8.0 cm

+6.0 µC −3.0 µC



The spherical shells could represent equipotential surfaces
either for a gravitational field around a point mass (or spherical mass) 
or for an electric field around an isolated point charge. In cross section, 
the equipotential spherical surfaces appear as concentric circles.

You will recall that the work done per unit charge in moving 

that charge from a potential V1 to a potential V2 is W
q

= V2 − V1. 

Since, on an equipotential surface, V1 = V2, the work done must be
zero. In other words, no work is required to move a charge or 
mass around on an equipotential surface, and the electric or gravi-
tational force does no work on the charge or mass. Consequently, a
field line must have no component along the equipotential surface.
An equipotential surface must be perpendicular to the direction 
of the field lines at all points. Figure 14.21 shows the electric field
lines and equipotential surfaces for pairs of point charges.

The field lines for these electric dipoles are shown in red
and the cross section of the equipotential surfaces are in blue. Notice that
field lines are always perpendicular to equipotential surfaces.

• Could the barometric lines on a weather map be considered to
be equipotential lines? Explain.

Conceptual Problem

Figure 14.21

++

++

+ +

++

+

+− + + +

Figure 14.20

equipotential surfaces
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The equipotential lines around a 
system of charges could be compared
to the contour lines on topographical
maps. Since these contour lines repre-
sent identical heights above sea level,
they also represent points that have
the same gravitational energy per unit
mass, and so are equipotential lines.

Eg = mgh

Eg

m
= gh

Vg ∝ h

Geography Link
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1. What are the differences in the data
required to calculate the gravitational 
potential energy of a system and the 
electric potential energy?

2. How does the amount of work done
relate to the electric potential difference
between two points in an electric field?

3. Research and briefly report on the 
use of electric potential differences in 
medical diagnostic techniques such as 
electrocardiograms.

4. Research and report on the role played
by electric potential differences in the
transmission of signals in the human 
nervous system.

5. Can an equipotential surface in the
vicinity of two like charges have a potential
of zero? Explain the reason for your answer.

6. Investigate Internet sites that use com-
puter programs to draw the electric field
lines near a variety of charge systems.
Prepare a portfolio of various patterns.

7. How could you draw in the equipo-
tential surfaces associated with the patterns
obtained in question 6?

8. (a) Why do you think atomic physicists
tend to speak of the electrons in atoms
as having “binding energy”?

(b) Investigate the use of the term “potential
well” to describe the energy state of atoms.

I

K/U

I

C

MC

MC

K/U

K/U

14.3 Section Review

CAREERS IN PHYSICS

“Good Seeing”

The first time Dr. Neil de Grasse Tyson looked at
the Moon through binoculars, he knew he wanted
to be a scientist. Today, he is an astrophysicist
doing research into dwarf galaxies and the “bulge”
at the centre of the Milky Way. At a recent high
school reunion, his former class-mates voted him
the one with the “coolest job.”

Astrophysicists such as Dr. Tyson study the
physical properties and behaviour of celestial 
bodies. They make observations using optical 
telescopes that generate visible images of stars
and other celestial bodies by means of concave
mirrors. Using computers, they record the images
and then examine them in detail. 

To find the kinds of images they seek, astro-
physicists often need to travel. One of Canada’s
best optical observation sites is the Dominion
Astrophysical Observatory (DAO) near Victoria,
B.C. The Victoria area generally has clear nights
and stable weather, which make for what astro-
physicists call “good seeing.” A more recently
developed facility is the Canada-France-Hawaii
Telescope (CFHT) on the extinct Hawaiian volcano
Mauna Kea. Mauna Kea, with its dark skies and
super-sharp star images, is the northern hemi-
sphere’s best site for optical observations.

Mauna Kea is also one site for a new optical-
infrared telescope project. Called the Gemini project,
it has another site on Cerro Pachon, a mountain in
central Chile. Together, the twin Gemini telescopes
give astrophysicists total coverage of both the
northern and southern hemispheres’ skies. That’s
“good seeing!”

Going Further 
Research one of these: the Dominion Astrophysical
Observatory (DAO), the Canada-France-Hawaii
Telescope (CFHT), or the Gemini Project.


