
When you carried out Investigation 13-A, you stretched a spring to
both measure its force constant and to turn it into a projectile.
This activity encouraged you to recall the properties of elastic
objects that you studied in Chapter 7 which focussed on the elas-
tic potential energy stored in a stretched spring. In this chapter,
you will direct your attention to the resulting motion that occurs
when you release the mass and allow it to oscillate.

Defining Simple Harmonic Motion
Any motion that repeats itself precisely over equal periods of time
is classed as periodic motion. If that periodic motion is generated
by a linear restoring force, it is simple harmonic motion. All three
of the graphs in Figure 13.1 represent periodic motion because the
motion of an object along the x axis is repetitive but only graph C
represents simple harmonic motion.

Periodic motion can appear very erratic (A and B) but simple
harmonic motion (C) follows a smooth curve.

You probably recall from Chapter 6, that the mathematical state-
ment of Hooke’s law, F = −kx, is a linear equation because the
force, F, is directly proportional to x, the amount of extension or
compression of the spring. The negative sign indicates that the
force always opposes the direction of the stretch, “restoring” the
object to its rest or equilibrium position. Therefore, the force that 
a spring exerts on a mass causes the mass to oscillate with simple
harmonic motion.

Figure 13.1
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• Explain the relationship between
potential energy and kinetic
energies of a mass in simple
harmonic motion.

• Solve problems relating to the
period of simple harmonic
motion for a mass on a spring
and a pendulum.

• Compile and organize data
using data tables and graphs 
to facilitate interpretation of 
the data.

• periodic motion

• simple harmonic motion

 T E R M S
K E Y

O U T C O M E S
S E C T I O N

The curve of force
versus amount of stretch or com-
pression for a Hooke’s law spring
is linear. The slope of the line is
the force constant.

Figure 13.2

x(m)

F = −kx

F
(N

) 
(r

es
to

ri
n

g 
fo

rc
e)



The Period of a Mass on a Spring
Any characteristics that you can describe for the motion of a mass
on a spring will provide a model for all types simple harmonic
motion. Two of the most obvious and related quantities that
describe any form of periodic motion are the period and the fre-
quency. You learned in Chapter 8 that the period is the length of
time required for an object to complete one full cycle of motion.
The frequency is the inverse of the period and is the number of
cycles that occur in a given time period. In SI units, the frequency
is the number of cycles per second. You probably recall that the
unit, “cycles per second,” has been given the name hertz (Hz).

How can you predict the period or frequency of a mass oscillat-
ing on the end of a spring based on the properties of the system?
Start with the relationships you already know that involve the
mass, the force constant, and the amount of extension or compres-
sion of the spring? Figure 13.3 is similar to Figure 7.5 and will
help you recall the energy relationships for the mass and spring
system. You will use these relationships to develop an equation
describing the period of a mass on a spring.

The mass, the force constant, and the amplitude of the 
oscillating spring determine the total energy of the spring.

At any position, x, the total energy of the mass and spring system

is ET = 1
2 mv2 + 1

2 kx2. At either end of its oscillation, the mass

stops and changes direction. Therefore, the velocity is zero so all

of the energy is elastic potential energy, ET = 1
2 kA2. At equilibrium

(x = 0), the spring is not stretched so all of the energy is kinetic

energy, ET = 1
2 mv2

max. In the following steps, you will use this infor-

mation to derive an expression for the speed of the mass at any
position of its motion. Later, you will see how this expression will
lead you to an equation for the period of the motion of the mass.

Figure 13.3
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When physicists develop the
basic concepts behind a system
or type of motion, they work with
idealized conditions. One of these
ideal conditions for a mass oscil-
lating on the end of the spring 
is that the spring is “massless.”
In this case, massless means 
that the mass of the spring is so
much smaller than the mass of
the oscillating object that the
mass of the spring has no affect
on the motion.

PHYSICS FILE



To use the last relationship in the development of an equation for
the period of the motion of the mass on the spring, you will need
to find another type of motion that has a velocity with an identical
mathematical relationship. The motion that you need is the projec-
tion — or shadow — of a marker moving with uniform circular
motion. This image can be obtained by placing a marker on the
edge of a disk that is rotating at a constant speed as shown in
Figure 13.4A.

v = vmax

√
1 − x2

A2

■ Finally, solve for v by taking
the square root of both
sides of the equation.

v2 = v2
max

(
1 − x2

A2

)
■ Substitute v2

max into the
equation for v2 because it

is equal to k
m

A2.

ET = 1
2

mv2
max and ET = 1

2
kA2

1
2

kA2 = 1
2

mv2
max

kA2 = mv2
max

v2
max = k

m
A2

■ To find a simpler expression

for k
m

A2, set the two

expressions shown here
equal to each other and
then solve for v2

max.

v2 = k
m

A2

(
1 − x2

A2

)
■ Move the A2 outside of 

the brackets.

v2 = k
m

(A2 − x2)
■ Factor k out of the numera-

tor and rewrite.

1
2

kA2 = 1
2

mv2 + 1
2

kx2

kA2 = mv2 + kx2

mv2 = kA2 − kx2

v2 = kA2 − kx2

m

■ Multiply both sides of the
equation by 2 and then
solve for v2.

ET = 1
2

mv2 + 1
2

kx2 and ET = 1
2

kA2

1
2

kA2 = 1
2

mv2 + 1
2

kx2

■ Because the two expres-
sions on the right are both
equal to the total energy 
of the spring and mass 
system, you can set them
equal to each other.
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The shadows of (A) the marker on the edge of a rotating disk
and of (B) a mass on the end of a spring are recorded on a tape that is moving
at a constant speed.

The shadows of the marker on the rotating disk and mass on the
oscillating spring appear to be identical but are they? To answer
this question, study Figure 13.5 which is looking directly down
from above the disk. 

The radius of the rotating disk is A, making the amplitude of
the motion of the shadow A. The following steps show you how 
to find an expression for side h of the green triangle.

The vector, v0, represents the tangential speed of the marker which
is constant for uniform circular motion. The vector, v, is the speed
of the shadow of the marker. Since vector v0 is perpendicular to
the radius of the circle, A, and vector v is perpendicular to side h
of the triangle, the angles between these pairs of lines, labelled θ,
must be the same making the triangles similar. Use these similar
triangles to find an expression for the speed, v, of the shadow of
the marker.

v = v0

√
1 − x2

A2

■ Solve for v.

v
v0

=
√

A2 − x2

A

v
v0

=
√

A2 − x2

A2

v
v0

=
√

1 − x2

A2

■ The ratio of homologous
sides of similar triangles 
are equal.

Rearrange.

h2 = A2 − x2

h =
√

A2 − x2

■ Rearrange and solve for h.

A2 = x2 + h2■ Apply the Pythagorean 
theorem.

Figure 13.4
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The disk of radius
A is rotating counterclockwise at 
a constant speed.

Figure 13.5
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The expression for the speed of the shadow of the marker is math-
ematically identical to the expression for the speed of a mass on
the end of an oscillating spring if v0 is equal to vmax. This will be
true if the amplitude of the mass on the spring is the same as the
radius of the rotating disk. The similarity of these mathematical
relationships demonstrates that the shadows of the marker on the
rotating disk and the mass on the oscillating spring are identical.
Any relationships derived for the shadow of the marker on the
rotating disk are true for the mass on the spring. The following
steps show you how to find the period of the shadow of the marker
on the rotating disk.

f = 1
T

f = 1
2π

√m
k

f = 1
2π

√
k
m

■ You can use the equation 
for the period to derive an
equation for the frequency 
of a mass on a spring.

T = 2πA

A
√

k
m

T = 2π
√

m
k

■ Substitute the value for v0

into the equation for the 
period and simplify.

v2
max = k

m
A2

v2
0 = k

m
A2

v0 = A

√
k
m

■ The v0 in this equation is the
same as vmax for the mass on
the spring. Set v0 equal to the
expression for vmax in the
derivation on page 601.

T = 2πA
v0

■ Solve for the period, T.

∆d = 2πA and ∆t = T

v0 = 2πA
T

■ Apply the equation for speed
to the marker moving in a cir-
cle of radius A. The distance
travelled in one period is the
circumference of the circle.

v = ∆d
∆t

■ Write the general equation 
for speed or magnitude of
velocity.
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Knowing the relationship between the period of a mass and
spring system in conjunction with your previous knowledge of the
energy relationships of a mass and spring system allows you to
solve a wider variety of problems.

Quantity Symbol SI unit
period T s (seconds)

mass m kg (kilograms)

force constant k N
m

(newtons per metre)

Unit Analysis

seconds =
√

kilograms
newtons

metre

s =
√

kg
N
m

=
√

kg·m
N

=
√

kg·m
kg·m

s2

=
√

s2 = s

T = 2π
√ m

k

PERIOD OF MASS ON SPRING
The period of a mass that is oscillating on the end of a spring
is two pi times the square root of the quotient of the mass and
the force constant.
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Your school might
have an apparatus like this to
demonstrate that the motion of
the shadow of a mass on a spring
is identical to the motion of a
shadow of an object on the edge
of a rotating disk. If not, your class
might choose to make a project out
of designing and building such 
an apparatus.

Figure 13.6

www.mcgrawhill.ca/links/
atlphysics
Simulations of masses oscillating on
springs, in which you can vary the
mass and the force constant of the
spring and observe the results, can 
be found on the Internet. To find these
simulations, go to the Internet site
above and follow the links.

Web Link

NASA PURSVE/UNM Physics And
Astronomy Department Regener Hall
Lecture Demonstratons



You stretch a spring a distance of 12.0 cm from its rest length and
release it. A 125 g mass on the end of the spring completes exactly
20.0 cycles in 15.5 s. Find:
(a) the period

(b) the force constant of the spring

(c) the total energy of the system

(d) the maximum speed of the mass

(e) the speed of the mass when it is 10.0 cm from its 
equilibrium position

Frame the Problem
■ When you stretch the spring, you give it elastic potential energy

which is then the total energy of the system. 

■ When you release the mass, the elastic potential is transformed
into kinetic energy and back to elastic potential energy, cyclically. 

■ At the moment that total energy is in the form of kinetic energy,
the mass is at its maximum speed.

■ The number of cycles completed in one second is the period.

■ The force constant is related to the period and the mass.

■ At any point in the motion of the mass, the total energy is equal to
the sum of the kinetic and potential energies.

■ Always convert all units to SI units before substituting values 
into equations.

Identify the Goal
(a) the period, T, of oscillation of the mass

(b) the force constant, k, of the spring

(c) the total energy, ET, of the system

(d) the maximum speed, vmax, of the mass

(e) the speed, v, of the mass at x = 10.0 cm

Variables and Constants
Known Unknown
A = 12.0 cm T
m = 125 g k
N = 20.0 (cycles) ET

∆t = 15.5 s vmax

x = 10.0 cm v(at x = 10.0 cm)

MODEL PROBLEM 
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Strategy Calculations

(a) The period of the motion is 0.775 s.

(b) The force constant of the spring is 0.0205 N/m.

(c) The total energy of the system is 1.48 × 10−4 J.

vmax =

√
2(1.479 × 10−4 J)

0.125 kg

vmax =

√
2.3663 × 10−3

kg·m
s2

kg

vmax = 4.8646 × 10−2 m
s

vmax ≅ 4.86 × 10−2 m
s

Substitute numerical values and solve.

v2
max = 2ET

m

vmax =
√

2ET
m

Solve for maximum speed.

ET = 1
2

mv2
max

Write the equation kinetic energy for total energy.

ET = 1
2

kA2

ET = 1
2

(
0.02054 N

m

)
(0.120 m)2

ET = 1.479 × 10−4 J

ET ≅ 1.48 × 10−4 J

Before the mass is released, the total energy of
the system is the elastic potential energy. 

kg
s2 · m

m
= kg·m

s2 · 1
m

= N
m

k ≅ 0.0205 N
m

Prove that a kg/s2 is equivalent to a N/m by 
multiplying the numerator and denominator 
of the units by m.

k = 4π2
[

0.125 kg
(15.5 s)2

]

k = 0.02054 kg
s2

Substitute numerical values and solve.

(T2)
(

k
T2

)
=

[
4π2

( m
k

)] k
T2

k = 4π2
( m

T2

)
Solve the equation for the force constant.

T = 2π
√

m
k

T2 = 4π2
( m

k

)
Write the equation that relates the period to the
mass and the force constant then square both
sides of the equation.

T = ∆t
N

T = 15.5 s
20.0

T = 0.775 s

Find the period from the definition.
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(d) The maximum speed of the mass is 4.86 × 10−2 m/s.

(e) The speed of the mass when it was 10.0 cm from equilibrium was 0.0269 m/s.

Validate 
All of the units cancelled properly to give the correct units for every answer. The force constant and
the maximum speed are very small but there is a relatively small mass oscillating very slowly so you
would expect that the restoring force and the energy would be small. The average speed of the mass
was 48 cm (equilibrium to one maximum at 12 cm, to the other maximum at −12 cm and back to

equilibrium) in 15.5 s. That is a speed of 0.48 m
15.5 s

or about 0.031 m
s

. You would expect the maximum
speed to be somewhat larger which it is.

1. A 0.525 kg mass oscillates on the end of a
spring having a force constant of 85.0 N/m.
What is the period of the oscillations?

2. You tied a 275 g ball to the end of an elastic
band and stretched the band and released it.
You counted 15 complete oscillations in 12 s.
If the elastic band obeys Hooke’s law, what is
the force constant of the elastic band?

3. A 0.250 kg mass is oscillating on the end of a
spring having a force constant of 154 N/m on
a frictionless surface. The amplitude of the
oscillations is 0.34 m.

(a) What is the period of the motion?

(b) What is the maximum speed of the mass?

(c) What is the speed of the mass when it is
0.16 m from its equilibrium position?

4. The maximum speed of a 1.45 kg block that is
oscillating on the end of a spring is 0.84 m/s. 

(a) If the amplitude of the oscillations is 
12.0 cm, what is the force constant of 
the spring?

(b) What is the period of the motion?

PRACTICE PROBLEMS

v =

√
2

(
ET − 1

2kx2
)

m

v =

√
2

(
1.479 × 10−4 J − 1

2

(
0.02054 N

m

)
(0.100 m)2

)
0.125 kg

v =
√

7.232 × 10−4 J
kg

v = 2.6892 × 10−2 m
s

v ≅ 0.0269 m
s

Substitute numerical values and solve. 

ET = 1
2

mv2 + 1
2

kx2

1
2

mv2 = ET − 1
2

kx2

v2 =
2

(
ET − 1

2kx2
)

m

v =

√
2

(
ET − 1

2kx2
)

m

Write the equation for total energy at any point
in the motion of the mass. Solve the equation for
the speed.
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continued from previous page


Note:

√
J

kg
=

√
kg·m2

s2

kg
=

√
m2

s2 = m
s






I N V E S T I G A T I O N  13-B

The Period of a Mass on a Spring

TARGET SKILLS

Predicting
Performing and recording
Analyzing and interpreting
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You just derived an equation for the period of a
mass and spring system in which the mass was
moving horizontally on a frictionless surface. Is
the period of a mass hanging from a spring under
the force of gravity the same as the calculated
value of the period for the mass on a spring
moving on a horizontal, frictionless surface? 

Problem
Is the observed period of a mass oscillating on
the end of a vertical spring the same as the period
predicted by the equation, T = 2π

√ m
k

.

Equipment
■ retort stand
■ spring
■ hanger
■ set of masses
■ balance
■ stopwatch

Procedure
1. Predict whether the period of a spring mass

system that is vertical and affected by gravity
will have the same period as the theoretical
period developed for a horizontal spring and
mass system.

2. Using the methods that you used in
Investigation 13-A and Investigation 6-A,
determine the force constant of the spring.

3. After you have completed measuring the
force constant, hang a 100 g mass on the
spring. If you are using a mass hanger, deter-
mine the exact total mass that the spring is
supporting. Record the amount of mass.

4. Stretch the spring about 2 cm and release it.
After one or two cycles, start the stopwatch
and start counting cycles. 

5. Determine the time for ten complete cycles.
Divide the time by ten and record the period.

6. Stretch the spring about 3 cm and release it.
(Note: Depending on the spring you are using,
you might want to reduce the amplitude
instead of increasing it in order to prevent
the spring from being stretched beyond its
elastic limit.) Repeat steps 3 and 4.

7. Add 50 g to the mass on the spring and record
the total amount of mass on the spring. 

8. Repeat steps 3, 4, and 5 for the larger mass.

9. Calculate the theoretical periods for the two
different amounts of mass and the two differ-
ent amplitudes from the masses and force
constant. 

10. Determine the percent deviation between
your calculated and observed values for the
period of the spring and mass systems.

Analyze and Conclude
1. Why is measuring the time for ten cycles

then dividing by ten more accurate than
measuring one cycle?

2. Compare the periods that were calculated
using the different amplitudes. Was there a
significant difference between the observed
periods for one amount of mass and two 
different amplitudes? If so, give some possible
explanations.

3. Were the percent deviations between the
observed and calculated values for the period
small enough to be explained by experimental
or measurement error? What are some possible
causes of experimental error?

4. From your results, state whether you believe
that the period of mass and spring systems
for hanging masses are the same as the theo-
retical periods. Explain your reasoning. 

5. Was your original prediction correct? Explain
your reasoning for your original prediction.



Period of a Simple Pendulum
Grandfather clocks, like the one in the photograph, are an attrac-
tive piece of history. Is the ornamental pendulum swinging simply
for appearance? No, the pendulum is a precision scientific instru-
ment. The carefully adjusted period of the pendulum determines
the speed with which the hands on the clock turn and therefore
make it possible for the clock to keep accurate time.

In this section, you will develop an expression for the period of a
pendulum. The first step in your procedure will be to find an
expression for a linear restoring force that causes the pendulum
bob to return to its equilibrium position. You will then substitute
the proportionality constant from that equation into the period for
a mass and spring system in place of the force constant, k.

To start developing the equation for the restoring force for the
pendulum, examine Figure 13.8. When you pull a pendulum bob
to the side, you give it gravitational potential energy. Therefore, it
is the force of gravity that causes the bob to return to its equilibrium
position. If you keep the string taut while lifting the bob, it moves
a distance d along the path of the arc of a circle as shown in the
figure. The following steps will guide you through the development
of the period of the pendulum.
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Galileo was the first person to have
the idea of using a pendulum to control
the timing of clocks. At the age of 77
and totally blind, Galileo described his
idea to a pupil, Viviani and to his son,
Vincenzio. His son drew diagrams of
the proposed clock but neither Galileo
nor Vincenzio lived long enough to test
the design. Soon thereafter, Dutch 
scientist, Christiaan Huygens and
British scientist, Robert Hooke,
improved on the design and pendulum
clocks became a reality. For about 
300 years, pendulum clocks were 
the most dependable, accurate 
clocks available.

History Link

When the pendu-
lum is drawn back so that the
string makes an angle θ with the
vertical equilibrium position, the
gravitational force vector, Fg

makes an angle θ with the line
along the pendulum string. The
angles must be the same because
they are angles made when one
straight line intersects with two
vertical, therefore parallel, lines.

Figure 13.8

Fg cos θFg sinθ θ

θ

x
dpath

Fg

⇀
FT

The position of the
ornamental pendulum bob can be
precisely adjusted to create an exact
period so the clock will tell perfect
time. The gravitational potential
energy of the slowly dropping weights
provides energy for the pendulum to
continue to swing in spite of loss of
energy due to friction.

Figure 13.7



Did you notice any inconsistencies in this derivation? The sine
function is not a linear function, so the force is not precisely a linear
restoring force. When you substitute x/� for sin θ, however, it appears
to be a linear function but now the distance, x, is not identical to, d,
the length of the path taken by the pendulum bob. Nevertheless, if the
angle between the equilibrium line and the pendulum string is less
than 15˚, the error caused by these non-ideal conditions will be less
than one percent. Thus the equation is valid for the period of a pendu-
lum for small angles. Also, notice that the only property of the pendu-
lum that affects its period is the length. The mass of the pendulum
bob has no effect on the period.

■ Would a pendulum have the same period on the moon that it has on
Earth? Explain.

■ Would a mass and spring system have the same period on the moon
that it has on Earth? Explain.

■ Would a spring and mass system oscillate on the Space Station?

■ Would a pendulum swing on the Space Station?

Conceptual Problems

T = 2π
√

m
k

T = 2π
√

m
mg
�

T = 2π
√

m �

mg

T = 2π
√

�

g

■ The constants, mg
�

, are performing the

same function in this relationship as k

in Hooke’s law. Substitute mg
�

for k in

the period of a mass and spring system
and simplify the expression.

FR = −mg
�

x■ Rearrange the equation to combine the
constants and isolate the variable, x.

FR = −mg x
�

■ Inspection of the green triangle reveals
that you can write sin θ in terms of the
properties of the pendulum, that is, the
length, � of the pendulum string.

FR = −Fg sin θ
FR = −mg sin θ

■ The restoring force must act along the
path of the pendulum which is tangent
to the arc. As you can see in the red 
triangle in the figure, the magnitude of
the restoring force, FR, is the component
of the weight of the bob that is tangent
to the arc. It is negative because it is in
the direction that would reduce the 
distance, d.
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Bend a Wall

Measuring the Value
of g, the Acceleration
Due to Gravity

Q U I C K

L A B

TARGET SKILLS

Initiating and planning
Performing and recording
Analyzing and interpreting

Quantity Symbol SI unit
period of pendulum T s (seconds)

length of pendulum � m (metres)

acceleration due to gravity g m
s2 (metres per

second squared)

Unit Analysis

seconds =
√

metres
metres

seconds2

s =
√

m
m
s2

=
√

m s2

m
=

√
s2 = s

T = 2π
√

�

g

The period of a pendulum is the product of two pi and the
square root of the quotient of length of the pendulum and the
acceleration due to gravity.
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You have probably measured the acceleration
due to gravity using a ticker tape timer attached
to a falling mass and with an Atwood’s
machine. The period of a pendulum offers 
a completely different way to measure g. 

Assemble and measure the periods of pendu-
lums of at least three very different lengths.
When assembling the pendulums, ensure that
the mass of the pendulum bob is much greater
than the mass of the string. When taking data,
measure the time required for at least 10 full
cycles and then divide the time by the number
of cycles. At what point within the pendulum is
gravity effectively acting on the mass? Calculate
the value of g using the periods and the pendu-
lum lengths that you measured. Determine the
percent deviation between your values of g and
the accepted value of 9.81 m/s2.

Analyzing and Concluding
1. Why is it important to make the mass of the

pendulum bob significantly greater than the
mass of the string?

2. Why should you measure the time for ten
cycles rather than one cycle?

3. Where, within the pendulum bob does the
force of gravity appear to act?

4. Which length, longest, middle, or shortest,
gave the most accurate value of g?

5. What are the most likely sources of error in
your determination of g using the pendulum?

6. What would be the most likely sources of
error in the measurement of g

(a) using a falling mass and a ticker tape
timer?

(b) using an Atwood’s machine?



(a) Find the period of a pendulum with a 2.45 kg bob and having a
length of 1.36 m.

(b) By what amount would you have to increase the length in order
to double the period?

Frame the Problem
■ The only property of a pendulum that affects the period is 

the length.

■ The relationship between period and length of a pendulum is 
not linear.

Identify the Goal
(a) the period, T of the pendulum

(b) the increase in length, ∆�, of the pendulum

Variables and Constants
Known Implied Unknown
�1 = 1.36 m g = 9.81 m

s2 T1 �2

T2 = 2T1 T2 ∆�

Strategy Calculations

(a) The period is 2.34 s.

T2
( g

4π2

)
= 4π2

(
�

g

)( g
4π2

)
� = T2g

4π2

Then solve for length.

T = 2π
√

�

g
Write the equation for the period of a pendulum
and square both sides.

T2 = 2T1

T2 = 2(2.33945 s)
T2 = 4.6789 s
T2 ≅ 4.68 s

Double the first period to find the second.

T1 = 2π
√

1.36 m
9.81m

s2

T1 = 2π
√

0.138634 s2

T1 = 2.33945 s

T1 ≅ 2.34 s

Substitute numerical values and solve.

T = 2π
√

�

g
Write the equation for the period of 
a pendulum.

MODEL PROBLEM 
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1. (a) Are all examples of periodic motion
also examples of simple harmonic
motion? Explain.

(b) Are all examples of simple harmonic
motion also examples of periodic
motion? Explain.

2. Explain the logic that was used to verify
that the shadows of a marker moving with
uniform circular motion is mathematically
identical the motion of a mass on the end
of a spring.

3. What must be true of a system to make it
move with simple harmonic motion?

4. Explain the conditions for use of the 

equation, T = 2π
√

�

g
, for the period of 

a pendulum.

13.1 Section Review

(b) The increase in length must be 4.08 m.

Validate 
All of the units cancel properly to give second for period and metres
for length. Also, since the period is proportional to the square root
of the length, you would expect that the increased length would
have to be two squared or four times greater than the original length
in order to double the period. �2 is exactly four times �1.

5. What is the period of a pendulum with a
length of 0.45 m?

6. What must be the length of a pendulum to
give it a period of 4.0 s?

7. If every swing of the pendulum in a clock
causes the second hand to move an angle

representing exactly one half a second, what
must the length of the pendulum be to make
the clock keep accurate time?

8. If a pendulum has a period of 0.36 s on
Earth, what would its period be on the
Moon?

PRACTICE PROBLEMS

∆� = �2 − �1

∆� = 5.44 m − 1.36 m
∆� = 4.08 m

Subtract �1 from �2.

�2 =
(4.6789 s)2

(
9.81 m

s2

)
4π2

�2 = 5.44 m

Substitute numerical values and solve.
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