
In previous science courses, you learned about the Ptolemaic 
system for describing the motion of the planets and the Sun. The
system developed by Ptolemy (151–127 B.C.E.) was very complex
because it was geocentric. That is, it placed Earth at the centre of
the universe. In 1543, Nicholas Copernicus (1473–1543) proposed
a much simpler, heliocentric system for the universe in which
Earth and all of the other planets revolved around the Sun. The
Copernican system was rejected by the clergy, however, because
the religious belief system at the time placed great importance 
on humans and Earth as being central to a physically perfect uni-
verse. You probably remember learning that the clergy put Galileo
Galilei (1564–1642) on trial for supporting the Copernican system. 

Have you ever heard of the Tychonic system? A famous Danish
nobleman and astronomer, Tycho Brahe (1546–1601), proposed a
system, shown in Figure 12.1, that was intermediate between the
Ptolemaic and Copernican systems. In Brahe’s system, Earth is 
still and is the centre of the universe; the Sun and Moon revolve
around Earth, but the other planets revolve around the Sun.
Brahe’s system captured the interest of many scientists, but never
assumed the prominence of either the Ptolemaic or Copernican
systems. Nevertheless, Tycho Brahe contributed a vast amount 
of detailed, accurate information to the field of astronomy.

Newton’s Law of 
Universal Gravitation12.1
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• Explain Kepler’s laws.

• Describe Newton’s law of 
universal gravitation.

• Apply Newton’s law of universal
gravitation quantitatively.
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• Kepler’s laws

• law of universal gravitation
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The Tychonic
universe was acceptable 
to the clergy, because it
maintained that Earth was
the centre of the universe.
The system was somewhat
satisfying for scientists,
because it was simpler 
than the Ptolemaic system.

Figure 12.1



Laying the Groundwork for Newton
Astronomy began to come of age as an exact science with the
detailed and accurate observations of Tycho Brahe. For more 
than 20 years, Brahe kept detailed records of the positions of the
planets and stars. He catalogued more than 777 stars and, in 1572,
discovered a new star that he named “Nova.” Brahe’s star was one
of very few supernovae ever found in the Milky Way galaxy. 

In 1577, Brahe discovered a comet and demonstrated that it was
not an atmospheric phenomenon as some scientists had believed,
but rather that its orbit lay beyond the Moon. In addition to 
making observations and collecting data, Brahe designed and 
built the most accurate astronomical instruments of the day (see
Figure 12.2). In addition, he was the first astronomer to make 
corrections for the refraction of light by the atmosphere.

In 1600, Brahe invited Kepler to be one of his assistants. Brahe
died suddenly the following year, leaving all of his detailed data
to Kepler. With this wealth of astronomical data and his ability to
perform meticulous mathematical analyses, Kepler discovered
three empirical relationships that describe the motion of the 
planets. These relationships are known today as Kepler’s laws.

or where A and B are two planets.
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KEPLER’S LAWS
1. Planets move in elliptical orbits, with the Sun at one focus

of the ellipse.

2. An imaginary line between the Sun and a planet sweeps
out equal areas in equal time intervals.

3. The quotient of the square of the period of a planet’s revo-
lution around the Sun and the cube of the average distance
from the Sun is constant and the same for all planets. 
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Tycho Brahe was a brilliant
astronomer who led an unusual and
tumultuous life. At age 19, he was
involved in a duel with another student
and part of his nose was cut off. For
the rest of his life, Brahe wore an 
artificial metal nose.

History Link

Brahe’s observa-
tory in Hveen, Denmark, contained
gigantic instruments that, without
magnification, were precise to
1/30 of a degree.

Figure 12.2



Kepler’s first law does not sound terribly profound, but he was
contending not only with scientific observations of the day, but
also with religious and philosophical views. For centuries, the
perfection of “celestial spheres” was of extreme importance in 
religious beliefs. Ellipses were not considered to be “perfect,” 
so many astronomers resisted accepting any orbit other than a
“perfect” circle that fit on the surface of a sphere. However, since
Kepler published his laws, there has never been a case in which
the data for the movement of a satellite, either natural or artificial,
did not fit an ellipse.

Kepler’s second law is illustrated in Figure 12.3. Each of the
shaded sections of the ellipse has an equal area. According to
Kepler’s second law, therefore, the planet moves along the arc of
each section in the same period of time. Since the arcs close to the
Sun are longer than the arcs more distant from the Sun, the planet
must be moving more rapidly when it is close to the Sun. 

According to Kepler’s second law, the same length of time 
was required for a planet to move along each of the arcs at the ends of the
segments of the ellipse. Kepler could not explain why planets moved faster
when they were close to the Sun than when they were farther away.

When Kepler published his third law, he had no way of know-
ing the significance of the constant in the mathematical expression
r3/T2 = k . All he knew was that the data fit the equation. Kepler
suspected that the Sun was in some way influencing the motion 
of the planets, but he did not know how or why this would lead 
to the mathematical relationship. The numerical value of the 
constant in Kepler’s third law and its relationship to the interac-
tion between the Sun and the planets would take on significance
only when Sir Isaac Newton (1642–1727) presented his law of 
universal gravitation. 

Figure 12.3
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A circle is a special case of an ellipse.
An ellipse is defined by two focuses
and the relationship F1P + F2P = k ,
where k is a constant and is the same
for every point on the ellipse. If the 
two focuses of an ellipse are brought
closer and closer together until they
are superimposed on each other, the
ellipse becomes a circle.

P

F1 F2

Math Link



Universal Gravitation
Typically in research, the scientist makes some observations that
lead to an hypothesis. The scientist then tests the hypothesis by
planning experiments, accumulating data, and then comparing 
the results to the hypothesis. The development of Newton’s law 
of universal gravitation happened in reverse. Brahe’s data and
Kepler’s analysis of the data were ready and waiting for Newton 
to use to test his hypothesis about gravity. 

Newton was not the only scientist of his time who was search-
ing for an explanation for the motion, or orbital dynamics, of the
planets. In fact, several scientists were racing to see who could
find the correct explanation first. One of those scientists was
astronomer Edmond Halley (1656–1742). Halley and others, based
on their calculations, had proposed that the force between the
planets and the Sun decreased with the square of the distance
between a planet and the Sun. However, they did not know how 
to apply that concept to predict the shape of an orbit. 

Halley decided to put the question to Newton. Halley first met
Newton in 1684, when he visited Cambridge. He asked Newton
what type of path a planet would take if the force attracting it to
the Sun decreased with the square of the distance from the Sun.
Newton quickly answered, “An elliptical path.” When Halley
asked him how he knew, Newton replied that he had made that
calculation many years ago, but he did not know where his 
calculations were. Halley urged Newton to repeat the calculations
and send them to him. 

Three months later, Halley’s urging paid off. He received an 
article from Newton entitled “De Motu” (“On Motion”). Newton
continued to improve and expand his article and in less than 
three years, he produced one of the most famous and fundamental
scientific works: Philosophiae Naturalis Principia Mathematica
(The Mathematical Principles of Natural Philosophy). The treatise
contained not only the law of universal gravitation, but also
Newton’s three laws of motion. 

Possibly, Newton was successful in finding the law of universal
gravitation because he extended the concept beyond the motion of
planets and applied it to all masses in all situations. While other
scientists were looking at the motion of planets, Newton was
watching an apple fall from a tree to the ground. He reasoned that
the same attractive force that existed between the Sun and Earth
was also responsible for attracting the apple to Earth. He also 
reasoned that the force of gravity acting on a falling object was
proportional to the mass of the object. Then, using his own third
law of action-reaction forces, if a falling object such as an apple
was attracted to Earth, then Earth must also be attracted to the
apple, so the force of gravity must also be proportional to the 
mass of Earth. Newton therefore proposed that the force of gravity
between any two objects is proportional to the product of their
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Sir Edmond Halley, the astronomer
who prompted Newton to publish 
his work on gravitation, is the same
astronomer who discovered the 
comet that was named in his honour
— Halley’s Comet. Without Halley’s
urging, Newton might never have 
published his famous Principia, 
greatly slowing the progress of
physics.

History Link



masses and inversely proportional to the square of the distance
between their centres — the law of universal gravitation. The
mathematical equation for the law of universal gravitation is given
in the following box.

• You have used the equation Fg = mg many times to calculate the
weight of an object on Earth’s surface. Now, you have learned 

that the weight of an object on Earth’s surface is Fg = G mEmo
r2
E-o

, 

where mE is the mass of Earth, mo is the mass of the object, and
rE-o is the distance between the centres of Earth and the object.
Explain how the two equations are related. Express g in terms 
of the variables and constant in Newton’s law of universal 
gravitation.

Conceptual Problem

Quantity Symbol SI unit
force of gravity Fg N (newtons)

first mass m1 kg (kilograms)

second mass m2 kg (kilograms)

distance between the 
centres of the masses r m (metres)

universal gravitational 
constant G N · m2

kg2 (newton · metre
squared per 
kilogram squared)

Unit Analysis

newton =
( newton · metre2

kilogram2

)( kilogram · kilogram
metre2

)
( N · m2

kg2

)( kg · kg
m2

)
= N

Note: The value of the universal gravitational constant is 

G = 6.67 × 10−11 N · m2

kg2 .

Fg = G m1m2
r2

NEWTON’S LAW OF UNIVERSAL GRAVITATION
The force of gravity is proportional to the product of the two
masses that are interacting and inversely proportional to the
square of the distance between their centres. 
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Weighing an Astronaut
A 65.0 kg astronaut is walking on the surface of the Moon, which
has a mean radius of 1.74 × 103 km and a mass of 7.35 × 1022 kg.
What is the weight of the astronaut?

Frame the Problem
■ The weight of the astronaut is the gravitational force on her.

■ The relationship Fg = mg, where g = 9.81 m
s2 , cannot be used in 

this problem, since the astronaut is not on Earth’s surface.

■ The law of universal gravitation applies to this problem. 

Identify the Goal
The gravitational force, Fg, on the astronaut

Variables and Constants
Known Implied Unknown
mM = 7.35 × 1022 kg
ma = 65.0 kg

r = 1.74 × 103 km (1.74 × 106 m)

G = 6.67 × 10−11 N · m2

kg2 Fg

Strategy Calculations

The weight of the astronaut is approximately 105 N.

Validate
Weight on the Moon is known to be much less than that on Earth.
The astronaut’s weight on the Moon is about one sixth of her weight 

on Earth (65.0 kg × 9.81 m
s2 ≅ 638 N ), which is consistent with this 

common knowledge.

Fg = G m1m2
r2

Fg =
(
6.67 × 10−11 N · m2

kg2

) (7.35 × 1022 kg)(65.0 kg)
(1.74 × 106 m)2

Fg = 105.25 N

Fg ≅ 105 N

Apply the law of universal 
gravitation.
Substitute the numerical values
and solve.

MODEL PROBLEM 
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1. Find the gravitational force between Earth
and the Sun. (See Appendix B, Physical
Constants and Data.)

2. Find the gravitational force between Earth
and the Moon.  (See Appendix B, Physical
Constants and Data.)

3. How far apart would you have to place two
7.0 kg bowling balls so that the force of gravi-
ty between them would be 1.25 × 10−4 N?
Would it be possible to place them at this
distance? Why or why not?

4. Find the gravitational force between the 
electron and the proton in a hydrogen atom
if they are 5.30 × 10−11 m apart. (See
Appendix B, Physical Constants and Data.)

5. On Venus, a person with mass 68 kg would
weigh 572 N. Find the mass of Venus from
this data, given that the planet’s radius is
6.31 × 106 m.

6. In an experiment, an 8.0 kg lead sphere is
brought close to a 1.5 kg mass. The gravita-
tional force between the two objects is
1.28 × 10−8 N. How far apart are the centres
of the objects?

7. The radius of the planet Uranus is 4.3 times
the radius of earth. The mass of Uranus is
14.7 times Earth’s mass. How does the 
gravitational force on Uranus’ surface 
compare to that on Earth’s surface?

8. Along a line connecting Earth and the Moon,
at what distance from Earth’s centre would
an object have to be located so that the 
gravitational attractive force of Earth on the
object was equal in magnitude and opposite
in direction from the gravitational attractive
force of the Moon on the object?

PRACTICE PROBLEMS
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Gravity and Kepler’s Laws
The numerical value of G, the universal gravitational constant,
was not determined experimentally until more than 70 years after
Newton’s death. Nevertheless, Newton could work with concepts
and proportionalities to verify his law.

Newton had already shown that the inverse square relationship
between gravitational force and the distance between masses 
was supported by Kepler’s first law — that planets follow 
elliptical paths. 

Kepler’s second law showed that planets move more rapidly
when they are close to the Sun and more slowly when they are
farther from the Sun. The mathematics of elliptical orbits in 
combination with an inverse square relationship to yield the speed
of the planets is somewhat complex. However, you can test the
concepts graphically by completing the following investigation.

continued from previous page



I N V E S T I G A T I O N  12-A

Orbital Speed of Planets

TARGET SKILLS

Modelling concepts
Analyzing and interpreting
Communicating results
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Can you show diagrammatically that a force
directed along the line between the centres of
the Sun and a planet would cause the planet’s
speed to increase as it approached the Sun and
decrease as it moved away? If you can, you have
demonstrated that Kepler’s second law supports
Newton’s proposed law of universal gravitation. 

Problem
How does a force that follows an inverse square
relationship affect the orbital speed of a planet
in an elliptical orbit?

Equipment
■ corkboard or large, thick piece of cardboard 
■ 2 pushpins
■ blank paper
■ 30 cm loop of string
■ pencil
■ ruler

Procedure
1. Place the paper on the corkboard or card-

board. Insert two pushpins into the paper
about 8 to 10 cm apart.

2. Loop the string around the pushpins, as
shown in the illustration. With your pencil, 

pull the string so that it is taut and draw an
ellipse by pulling the string all the way
around the pushpins. 

3. Remove the string and pushpins and label
one of the pinholes “Sun.”

4. Choose a direction around the elliptical orbit
in which your planet will be moving. Make
about four small arrowheads on the ellipse 
to indicate the direction of motion of the
planet.

5. Make a dot for the planet at the point that is
most distant from the Sun (the perihelion).
Measure and record the distance on the
paper from the perihelion to the Sun. From
that point, draw a 1 cm vector directed
straight toward the Sun. 

6. This vector represents the force of gravity 
on the planet at that point: Fg(per) = 1 unit.
(Fg(per) is the force of gravity when the planet
is at perihelion.)

7. Select and label at least three more points on
each side of the ellipse at which you will
analyze the force and motion of the planet. 

8. For each point, measure and record, on a
separate piece of paper, the distance from the
Sun to point P, as indicated in the diagram.
Do not write on your diagram, because it 
will become too cluttered.

P

15.6 cm perihelion

Sun

5.9 cm

continued



10. Calculate the length of the force vector from
each of the points that you have selected on
your orbit.

11. On your diagram, draw force vectors from
each point directly toward the Sun, making
the lengths of the vectors equal to the values
that you calculated in step 10.

12. At each point at which you have a force 
vector, draw a very light pencil line tangent
to the ellipse. Then, draw a line that is 
perpendicular (normal) to the tangent line. 

13. Graphically draw components of the force
vector along the tangent (FT) and normal (FN)
lines, as shown in the diagram. 

Analyze and Conclude
1. The tangential component of the force vector

(FT) is parallel to the direction of the velocity

of the planet when it passes point P. What
effect will the tangential component of force
have on the velocity of the planet?

2. The normal component of the force vector
(FN) is perpendicular to the direction of 
the velocity of the planet when it passes 
point P. What effect will the normal 
component of force have on the velocity 
of the planet?

3. Analyze the change in the motion of the
planet caused by the tangential and normal
components of the gravitational force at each
point where you have drawn force vectors.
Be sure to note the direction of the velocity
of the planet as you analyze the effect of the
components of force at each point.

4. Summarize the changes in the velocity of the
planet as it makes one complete orbit around
the Sun.

5. The force vectors and components that you
drew were predictions based on Newton’s
law of universal gravitation. How well do
these predictions agree with Kepler’s 
observations as summarized in his second
law? Would you say that Kepler’s data 
supports Newton’s predictions?

FT

Fg

Fg

FN

Sun

P

normal

tangent
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9. Follow the steps in the table to see how to determine the length of the force vector at each point.

Procedure Equation

Fg(P) = (1 unit)(15.6 cm)2

(5.9 cm)2

Fg(P) = 6.99 units

■ You can now find the relative magnitude of the gravitational 
force on the planet at any point on the orbit by substituting the
magnitudes of the radii into the above equation. For example, 
the magnitude of the force at point P in step 8 is 6.99 units.

Fg(peri) r2
peri = Fg(P) r2

P

Fg(P) =
Fg(peri) r2

peri

r2
P

■ Consequently, you can set the expression Fgr2 for any one point
equal to Fgr2 for any other point. Use the values at perihelion as a
reference and set Fg(P)r2 equal to Fg(peri)r2

peri. Then solve for the Fg(P).

Fg = G
mSmp

r2

Fgr2 = GmSmp

■ The masses of the Sun and planet remain the same, so the value
GmSmp is constant. Therefore, the expression Fgr2 for any point on
the orbit is equal to the same value.



Kepler’s third law simply states that the ratio r3/T2 is constant
and the same for each planet orbiting the Sun. At first glance, 
it would appear to have little relationship to Newton’s law of 
universal gravitation, but a mathematical analysis will yield a 
relationship. To keep the mathematics simple, you will consider
only circular orbits. The final result obtained by considering 
elliptical orbits is the same, although the math is more complex.
Follow the steps below to see how Newton’s law of universal 
gravitation yields the same ratio as given by Kepler’s third law.

As you can see, Newton’s law of universal gravitation indicates 

not only that the ratio r3

T2 is constant, but also that the constant 

is GmS
4π2 . All of Kepler’s laws, developed prior to the time when 

Newton did his work, support Newton’s law of universal gravita-
tion. Kepler had focussed only on the Sun and planets, but

(
G mS

r

)( r
4π2

)
=

( 4π2r2

T2

)( r
4π2

)
r3

T2 = GmS
4π2

■ Multiply each side of the 

equation by r
4π2 .

G mS
r

=
( 2πr

T

)2

G mS
r

= 4π2r2

T2

■ Substitute the expression
for the velocity of the planet
into the above equation.

v = ∆d
∆t

∆d = 2πr

∆t = T

v = 2πr
T

■ Since Kepler’s third law
includes the period, T, as a
variable, find an expression
for the velocity, v, of the
planet in terms of its period.

A planet travels a distance
equal to the circumference
of the orbit during a time
interval equal to its period.

G
mSmp

r2 = mpv2

r

G mS
r

= v2

■ Since the force of gravity
must provide a centripetal
force for the planets, set 
the gravitational force equal
to the required centripetal
force.

Simplify the equation.

Fg = G
mSmp

r2
■ Write Newton’s law of uni-

versal gravitation, using mS

for the mass of the Sun and
mp for the mass of a planet.
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Newton proposed that the laws applied to all types of orbital
motion, such as moons around planets. Today, we know that all 
of the artificial satellites orbiting Earth, as well as the Moon, 
follow Kepler’s laws.

Mass of the Sun and Planets
Have you ever looked at tables
that contain data for the mass
of the Sun and planets and
wondered how anyone could
“weigh” the Sun and planets
or determine their masses?
English physicist and chemist
Henry Cavendish (1731–1810)
realized that if he could 
determine the universal 
gravitational constant, G, he
could use the mathematical
relationship in Kepler’s third
law to calculate the mass of
the Sun. A brilliant experi-
mentalist, Cavendish 
designed a torsion balance,
similar to the system in 
Figure 12.4, that allowed 
him to measure G. 

A torsion balance can measure extremely small amounts of the
rotation of a wire. First, the torsion balance must be calibrated to
determine the amount of force that causes the wire to twist by a
specific amount. Then, the large spheres are positioned so that the
bar supporting them is perpendicular to the rod supporting the
small spheres. In this position, the large spheres are exerting equal
gravitational attractive forces on each of the small spheres. The
system is in equilibrium and the scale can be set to zero. The large
spheres are then moved close to the small spheres and the amount
of twisting of the wire is determined. From the amount of twisting
and the calibration, the mutual attractive force between the large
and small spheres is calculated. 

Using his torsion balance, Cavendish calculated the value of G
to be 6.75 × 10−11 N · m2/kg2. The best-known figure today is
6.672 59 × 10−11 N · m2/kg2 . Cavendish’s measurement was within
approximately 1% of the correct value. As Cavendish did, you can
now calculate the mass of the Sun and other celestial bodies.

light
source

mirror

support

0 1 2 3
4
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In the torsion balance
that Cavendish designed and used, the
spheres were made of lead. The small
spheres were about 5 cm in diameter
and were attached by a thin but rigid
rod about 1.83 m long. The large
spheres were about 20 cm in diameter.

Figure 12.4

The value of G shows that the
force of gravity is extremely
small. For example, use unit
amounts of each of the variables
and substitute them into Newton’s
law of universal gravitation. 
You will find that the mutual
attractive force between two 
1 kg masses that are 1 m apart 
is 6.672 59 × 10−11 N.

PHYSICS FILE

Henry Cavendish was a very wealthy
and brilliant man, but he also was very
reclusive. He was rarely seen in public
places, other than at scientific meet-
ings. His work was meticulous, yet 
he published only a very small part 
of it. After his death, other scientists 
discovered his notebooks and finally
published his results. Cavendish had
performed the same experiments and
obtained the same results for some
experiments that were later done by
Coulomb, Faraday, and Ohm, who
received the credit for the work.

History Link



The Mass of the Sun
Find the mass of the Sun, using Earth’s orbital radius and period of revolution.

Frame the Problem
■ Kepler’s third law, combined with Newton’s law of universal gravitation,

yields an equation that relates the period and orbital radius of a satellite 
to the mass of the body around which the satellite is orbiting.

■ Earth orbits the Sun once per year.
■ Let RE represent the radius of Earth’s orbit around the Sun. This value

can be found in Appendix B, Physical Constants and Data.

Identify the Goal
The mass of the Sun, mS

Variables and Constants
Known Implied Unknown
Sun G = 6.67 × 10−11 N · m2

kg2

T = 365.25 days
RE(orbit) = 1.49 × 1011 m

mS

Strategy Calculations

The mass of the Sun is approximately 1.97 × 1030 kg.

Validate
The Sun is much more massive than any of the planets. 
The value sounds reasonable.

Check the units: 
( 1

N · m2

kg2

)( m3

s2

)
=

( kg2

N · m2

)( m3

s2

)
=

( kg2

kg · m
s2 · m2

)( m3

s2

)
= kg .

mS =
( 4π2

6.67 × 10−11 N · m2

kg2

) (1.49 × 1011 m)3

(3.1558 × 107 s)2

mS = 1.9660 × 1030 kg

mS ≅ 1.97 × 1030 kg

Substitute the numerical values into
the equation and solve.

365.25 days
( 24 h

day

)( 60 min
h

)( 60 s
min

)
= 3.1558 × 107 sConvert the period into SI units.

( r3

T2

)( 4π2

G

)
=

( GmS
4π2

)( 4π2

G

)
mS =

( 4π2

G

)( r3

T2

)
Solve for the mass of the Sun.

r3

T2 = GmS
4π2

Write Kepler’s third law, using the
constant derived from Newton’s law 
of universal gravitation.

MODEL PROBLEM 
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9. Jupiter’s moon Io orbits Jupiter once every
1.769 days. Its average orbital radius is
4.216 × 108 m. What is Jupiter’s mass?

10. Charon, the only known moon of the planet
Pluto, has an orbital period of 6.387 days at
an average distance of 1.9640 × 107 m from
Pluto. Use Newton’s form of Kepler’s third
law to find the mass of Pluto from this data.

11. Some weather satellites orbit Earth every 
90.0 min. How far above Earth’s surface is
their orbit? (Hint: Remember that the centre
of the orbit is the centre of Earth.)

12. How fast is the moon moving as it orbits
Earth at a distance of 3.84 × 105 km? 

13. On each of the Apollo lunar missions, the
command module was placed in a very low,
approximately circular orbit above the Moon.
Assume that the average height was 60.0 km
above the surface and that the Moon’s radius
is 7738 km. 

(a) What was the command module’s orbital
period?

(b) How fast was the command module 
moving in its orbit?

14. A star at the edge of the Andromeda galaxy
appears to be orbiting the centre of that
galaxy at a speed of about 2.0 × 102 km/s.
The star is about 5 × 109 AU from the centre
of the galaxy. Calculate a rough estimate of
the mass of the Andromeda galaxy. Earth’s
orbital radius (1 AU) is 1.49 × 108 km.

PRACTICE PROBLEMS
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Newton’s law of universal gravitation has stood the test of time
and the extended limits of space. As far into space as astronomers
can observe, celestial bodies move according to Newton’s law. As
well, the astronauts of the crippled Apollo 13 spacecraft owe their
lives to the dependability and predictability of the Moon’s gravity.
Although Albert Einstein (1879–1955) took a different approach in
describing gravity in his general theory of relativity, most calcula-
tions that need to be made can use Newton’s law of universal 
gravitation and make accurate predictions.

continued from previous page

1. Explain the meaning of the term “empir-
ical” as it applies to empirical equations.

2. What did Tycho Brahe contribute to
the development of the law of universal
gravitation?

3. Describe how Newton used each of
the following phenomena to support the
law of universal gravitation.

(a) the orbit of the moon

(b) Kepler’s third law

4. How did Newton’s concepts about 
gravity and his development of the law of

universal gravitation differ from the ideas
of other scientists and astronomers who
were attempting to find a relationship that
could explain the motion of the planets?

5. Describe the objective, apparatus, and
results of the Cavendish experiment.

6. Explain how you can “weigh” a planet.

7. Suppose the distance between two 
objects is doubled and the mass of one is
tripled. What effect does this have on the
gravitational force between the objects?

I

C

K/U

K/U

K/U

K/U

K/U
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