
Have you ever ridden on a ride like the one shown in the photo-
graph? From a distance, it might not look exciting, but the sensa-
tions could surprise you. 

Everyone lines up around the outer edge and the ride slowly
begins to turn. Not very exciting yet, but soon, the ride is spinning
quite fast and you feel as though you are being pressed tightly
against the wall. The rotations begin to make you feel disoriented
and your stomach starts to feel a little queasy. Then, suddenly, the
floor drops away, but you stay helplessly “stuck” to the wall. Just
as you realize that you are not going to fall, the entire ride begins
to tilt. At one point during each rotation, you find yourself looking
toward the ground, which is almost directly in front of you. You
do not feel as though you are going to fall, though, because you 
are literally stuck to the wall.

If this ride stopped turning, the people would start to fall.
What feature of circular motion prevents people from falling when the ride
is in motion and they are facing the ground?

What is unique about moving in a circle that allows you to
apparently defy gravity? What causes people on the Round Up 
to stick to the wall? As you study this section, you will be able 
to answer these questions and many more. 

Centripetal Acceleration
Amusement park rides are only one of a very large number of
examples of circular motion. Motors, generators, vehicle wheels,
fans, air in a tornado or hurricane, or a car going around a curve
are other examples of circular motion. When an object is moving
in a circle and its speed — the magnitude of its velocity — is 

Figure 11.5

Uniform Circular Motion11.2
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• Analyze, predict, and explain
uniform circular motion. 

• Explain forces involved in 
uniform circular motion in 
horizontal and vertical planes.

• Investigate relationships
between period and frequency
of an object in uniform 
circular motion.

• uniform circular motion

• centripetal acceleration

• centripetal force
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S E C T I O N



constant, it is said to be moving with uniform circular motion.
The direction of the object’s velocity is always tangent to the 
circle. Since the direction of the motion is always changing, the
object is always accelerating. 

Figure 11.6 shows the how the velocity of the object changes
when it is undergoing uniform circular motion. As an object
moves from point P to point Q, its velocity changes from ⇀v1 to ⇀v2.
Since the direction of the acceleration is the same as the direction
of the change in the velocity, you need to find ∆⇀v or ⇀v2 −⇀v1.
Vectors and ⇀v1 and ⇀v2 are subtracted graphically under the circle.
To develop an equation for centripetal acceleration, you will first
need to show that the triangle OPQ is similar to the triangle
formed by the velocity vectors, as shown in the following points. 
■ r1 = r2 because they are radii of the same circle. Therefore, 

triangle OPQ is an isosceles triangle.

■ |⇀v1| = |⇀v2| because the speed is constant. Therefore, the triangle
formed by −⇀v1, ⇀v2, and ∆⇀v is an isosceles triangle. 

■ r1⊥⇀v1 and r2⊥⇀v2 because the radius of a circle is perpendicular
to the tangent to the point where the radius contacts the circle. 

■ θr = θv because the angle between corresponding members of
sets of perpendicular lines are equal.

■ Since the angles between the equal sides of two isosceles 
triangles are equal, the triangles are similar.

Now use the two similar triangles to find the magnitude of the
acceleration. Since the derivation involves only magnitudes, omit
vector notations.

v∆t
r

= ∆v
v

■ Substitute this value of ∆r into the first
equation.

∆r = v∆t

■ The length of the arc from point P to
point Q is almost equal to ∆r . As the
angle becomes very small, the lengths
become more nearly identical. 

∆d = v∆t

■ The object travelled from point P to
point Q in the time interval ∆t.
Therefore, the magnitude of the object’s
displacement along the arc from P 
to Q is 

∆r
r

= ∆v
v

■ The ratios of the corresponding sides of
similar triangles are equal. There is no
need to distinguish between the sides r1

and r2 or v1 and v2, because the radii 
are equal and the magnitudes of the
velocities are equal.
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The direction of 
the change in velocity is found by
defining the vector −⇀v1 and then
adding ⇀v2 and −⇀v1. Place the tail
of −⇀v1 at the tip of ⇀v2 and draw
the resultant vector, ∆⇀v , from the
tail of ⇀v2 to the tip of −⇀v1.

Figure 11.6
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The magnitude of the acceleration of an object moving with 
uniform circular motion is a = v2/r . To determine its direction,
again inspect the triangle formed by the velocity vectors in 
Figure 11.6. The acceleration is changing constantly, so imagine a
vector ⇀v2 as close to ⇀v1 as possible. The angle θ is extremely
small. In this case, ∆⇀v is almost exactly perpendicular to both ⇀v1

and ⇀v2. Since ⇀v1 and ⇀v2 are tangent to the circle and therefore are
perpendicular to the associated radii of the circle, the acceleration
vector points directly toward the centre of the circle. 

Describing the acceleration vector in a typical Cartesian 
coordinate system would be extremely difficult, because the 
direction is always changing and, therefore, the magnitude of 
the x- and y-components would always be changing. It is much 
simpler to specify only the magnitude of the acceleration, which 
is constant for uniform circular motion, and to note that the 
direction is always toward the centre of the circle. To indicate this,
physicists speak of a “centre-seeking acceleration” or centripetal
acceleration, which is denoted as ac , without a vector notation.

Quantity Symbol SI unit

centripetal ac
m
s2 (metres per second squared)

acceleration

velocity (magnitude) v m
s

(metres per second)

radius (of circle) r m (metres)

Unit Analysis

metre
second2 =

( metre
second

)2

metre

(m
s

)2

m
=

m2

s2

m
= m

s2

Note: The direction of the centripetal acceleration is always
along a radius pointing toward the centre of the circle.

ac = v2

r

CENTRIPETAL ACCELERATION
Centripetal acceleration is the quotient of the square of the
velocity and the radius of the circle.

a = v2

r
■ Multiply both sides of the equation by v.

v
r

= a
v■ Substitute a into the equation for ∆v

∆t
.

a = ∆v
∆t

■ Recall the definition of acceleration.

v
r

= ∆v
v∆t

■ Divide both sides of the equation by ∆t.
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Mathematicians have developed a
unique system for defining compo-
nents of vectors such as force, 
acceleration, and velocity for move-
ment on curved paths, even when the
magnitude of the velocity is changing.
Any curve can be treated as an arc of
a circle. So, instead of using the x- and
y-components of the typical Cartesian
coordinate system, the vectors are
divided into tangential and radial 
components. The tangential compo-
nent is the component of the vector
that is tangent to the curved path at
the point at which the object is
momentarily located. The radial com-
ponent is perpendicular to the path
and points to the centre of the circle
defined by the arc or curved section of
the path. Radial components are the
same as centripetal components.

Math Link



Centripetal Force
According to Newton’s laws of motion, an object will accelerate
only if a force is exerted on it. Since an object moving with uni-
form circular motion is always accelerating, there must always be
a force exerted on it in the same direction as the acceleration, as
illustrated in Figure 11.7. If at any instant the force is withdrawn,
the object will stop moving along the circular path and will 
proceed to move with uniform motion, that is, in a straight line
that is tangent to the circular path on which it had been moving. 

Since the force causing a centripetal acceleration is always
pointing toward the centre of the circular path, it is called a 
centripetal force. The concept of centripetal force differs greatly
from that of other forces that you have encountered. It is not a
type of force such as friction or gravity. It is, instead, a force that 
is required in order for an object to move in a circular path. 

A centripetal force can be supplied by any type of force. For
example, as illustrated in Figure 11.8, gravity provides the cen-
tripetal force that keeps the Moon on a roughly circular path
around Earth, friction provides a centripetal force that causes a 
car to move in a circular path on a flat road, and the tension in a
string tied to a ball will cause the ball to move in a circular path
when you twirl it around. In fact, two different types of force
could act together to provide a centripetal force.

Any force that is directed toward the centre of a circle can 
provide a centripetal force. 

You can determine the magnitude of a centripetal force required
to cause an object to travel in a circular path by applying Newton’s
second law to a mass moving with a centripetal acceleration. 

Figure 11.8

⇀
Fg ⇀

F f
⇀
Fr
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A force acting 
perpendicular to the direction 
of the velocity is always required
in order for any object to move 
continuously along a circular path.

Figure 11.7
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The equation for the centripetal force required to cause a mass
m moving with a velocity v to follow a circular path of radius r is
summarized in the following box. 

Quantity Symbol SI unit

centripetal force Fc N (newtons)

mass m kg (kilograms)

velocity v m
s

(metres per second)

radius of circular path r m (metres)

Unit Analysis

(newtons) =
( kilogram

( metres
second

)2

metres

)

N =
kg

(m
s

)2

m
=

kgm2

s2

m
= kg · m

s2 = N

Fc = mv2

r

CENTRIPETAL FORCE
The magnitude of the centripetal force is the quotient of the
mass times the square of the velocity and the radius of 
the circle.

Fc = mv2

r

■ Substitute into Newton’s second law.
Omit vector notations because the force
and acceleration always point toward
the centre of the circular path.

ac = v2

r
■ Write the equation describing centripetal

acceleration.

⇀F = m⇀a■ Write Newton’s second law.
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Centripetal Force in a Horizontal and a Vertical Plane
1. A car with a mass of 2135 kg is rounding 

a curve on a level road. If the radius of
curvature of the road is 52 m and the 
coefficient of friction between the tires 
and the road is 0.70, what is the maxi-
mum speed at which the car can make 
the curve without skidding off the road? r

⇀v

⇀
F f

not enough friction

MODEL PROBLEMS

continued



Frame the Problem
■ Make a sketch of the motion of the car and the forces acting on it.
■ The force of friction must provide a sufficient centripetal force to

cause the car to follow the curved road.
■ The magnitude of force required to keep the car on the road 

depends on the velocity of the car, its mass, and the radius 
of curvature of the road.

■ Since r is in the denominator of the expression for centripetal force, 
as the radius becomes smaller, the amount of force required 
becomes greater.

■ Since v is in the numerator, as the velocity becomes larger, the force
required to keep the car on the road becomes greater.

Identify the Goal
The maximum speed, v, at which the car can make the turn

Variables and Constants
Known Implied Unknown
m = 2135 kg
r = 52 m

µ = 0.70 g = 9.81 m
s2 Ff

v
FN

Strategy Calculations

If the car is going faster than 19 m/s, it will skid off the road.

Validate
A radius of curvature of 52 m is a sharp curve. A speed of 19 m/s is
equivalent to 68 km/h, which is a high speed at which to take a sharp
curve. The answer is reasonable. The units cancelled properly to give
metres per second for velocity.

v =
√

(0.70)(52 m)
(
9.81 m

s2

)

v =
√

357.08 m2

s2

v = 18.897 m
s

v ≅ 19 m
s

Substitute in the numerical values and solve.

v2 = µmg
( r

m

)
v =

√
µrg

Solve for the velocity.

µmg = mv2

r
Since the car is moving on a level road, the 
normal force of the road is equal to the weight 
of the car. Substitute mg for FN.

Ff = Fc

µFN = mv2

r

Set the frictional force equal to the centripetal
force.

⇀v

Fc = Ff
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2. You are playing with a yo-yo with a mass of 225 g. The full length
of the string is 1.2 m. You decide to see how slowly you can swing
it in a vertical circle while keeping the string fully extended, even
when the yo-yo is at the top of its swing. 

(a) Calculate the minimum speed at which you can swing the yo-yo
while keeping it on a circular path.

(b) At the speed that you determine in part (a), find the tension in the
string when the yo-yo is at the side and at the bottom of its swing.

Frame the Problem
■ Draw free-body diagrams of the yo-yo at the top, bottom, and one side

of the swing.

■ At the top of the swing, both tension and the force of gravity are acting
toward the centre of the circle. 

■ If the required centripetal force is less than the force of gravity, the 
yo-yo will fall away from the circular path. 

■ If the required centripetal force is greater than the force of gravity, the
tension in the string will have to contribute to the centripetal force. 

■ Therefore, the smallest possible velocity would be the case where the
required centripetal force is exactly equal to the force of gravity.

■ At the side of the swing, the force of gravity is perpendicular to the
direction of the required centripetal force and therefore contributes
nothing. The centripetal force must all be supplied by the tension in
the string.

■ At the bottom of the swing, the force of gravity is in the opposite
direction from the required centripetal force. Therefore, the tension in
the string must balance the force of gravity and supply the required
centripetal force.

Identify the Goal
The minimum speed, v, at which the yo-yo will stay on a circular path
The tension, FT, in the string when the yo-yo is at the side of its circular path
The tension, FT, in the string when the yo-yo is at the bottom of its circular path

⇀
FT

⇀
FT

⇀
FT

⇀
Fg

⇀
Fg

⇀
Fg
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Variables and Constants
Known Implied Unknown
m = 225 kg
r = 1.2 m

g = 9.81 m
s2 vmin

FT(side)

FT(bottom)

Strategy Calculations

(a) The minimum speed at which the yo-yo can move is 3.4 m/s.

(b): Side – When the yo-yo is at the side of its swing, the tension in the string is 2.2 N.

(b): Bottom – When the yo-yo is at the bottom of its swing, the tension in the string is 4.4 N.

FT =
(225 g)

( 1 kg
1000 g

)(
3.431 m

s

)2

1.2 m
+ (225 g)

( 1 kg
1000 g

)(
9.81 m

s2

)

FT = 2.207
kg · m2

s2

m
+ 2.207 kg · m

s2

FT = 4.414 N

FT ≅ 4.4 N

Substitute numerical values and
solve.

Fc = FT + Fg

mv2

r
= FT − mg

FT = mv2

r
+ mg

Set the centripetal force equal to
the vector sum of the force of 
tension in the string and the gravi-
tational force. Solve for the force
due to the tension in the string.

FT = Fc

FT = mv2

r

FT =
(225 g)

( 1 kg
1000 g

)(
3.431 m

s

)2

1.2 m

FT = 2.207
kgm2

s2

m
FT ≅ 2.2 N

Set the force of tension in the
string equal to the centripetal
force. Insert numerical values 
and solve.

v =
√(

9.81 m
s2

)
(1.2 m)

v =
√

11.772 m2

s2

v = ±3.431 m
s

v ≅ 3.4 m
s

Substitute numerical values 
and solve.

A negative answer has no 
meaning in this application.

Fg = Fc

mg = mv2

r

mg
( r

m

)
= v2

v =
√

gr

Set the force of gravity on the 
yo-yo equal to the centripetal
force and solve for the velocity.
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Validate
The force of gravity (weight) of the yo-yo is 2.2 N. At the top of the swing, the
weight supplies the entire centripetal force and the speed of the yo-yo is deter-
mined by this value. At the side of the swing, the tension must provide the 
centripetal force and the problem was set up so that the centripetal force had 
to be equal to the weight of the yo-yo, or 2.2 N. At the bottom of the swing, the 
tension must support the weight (2.2 N) and, in addition, provide the required 
centripetal force (2.2 N). You would therefore expect that the tension would be
twice the weight of the yo-yo. The units cancel properly to give newtons for force.

15. A boy is twirling a 155 g ball on a 1.65 m
string in a horizontal circle. The string will
break if the tension reaches 208 N. What is
the maximum speed at which the ball can
move without breaking the string?

16. An electron (mass 9.11 × 10−31 kg) orbits a
hydrogen nucleus at a radius of 5.3 × 10−11 m
at a speed of 2.2 × 106 m/s. Find the centri-
petal force acting on the electron. What type
of force supplies the centripetal force?

17. A stone of mass 284 g is twirled at a constant
speed of 12.4 m/s in a vertical circle of
radius 0.850 m. Find the tension in the 
string (a) at the top and (b) at the bottom of
the revolution. (c) What is the maximum 

speed the stone can have if the string will
break when the tension reaches 33.7 N?

18. You are driving a 1654 kg car on a level 
road surface and start to round a curve at 
77 km/h. If the radius of curvature is 129 m,
what must be the frictional force between 
the tires and the road so that you can safely
make the turn?

19. A stunt driver for a movie needs to make a
2545 kg car begin to skid on a large, flat,
parking lot surface. The force of friction
between his tires and the concrete surface is
1.75 × 104 N and he is driving at a speed of
24 m/s. As he turns more and more sharply,
what radius of curvature will he reach when
the car just begins to skid?

PRACTICE PROBLEMS
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Centripetal Force versus Centrifugal Force
You learned in Chapter 5 that a centrifugal force is a fictitious
force. Now that you have learned about centripetal forces, you 
can understand more clearly why a centrifugal force is classed 
as fictitious. 

Analyze the motion of and the force on a person who is riding
the Round Up. Imagine that Figure 11.9 is a view of the Round 
Up ride from above and at some instant you are at point A on the
ride. At that moment, your velocity (⇀v ) is tangent to the path of
the ride. If no force was acting on you at all, you would soon be
located at point B. However, the solid cylindrical structure of the
ride exerts a normal force on you, pushing you to point C. There is
no force pushing you outward, just a centripetal force pushing you
toward the centre of the circular ride.

Assume that the
Round Up ride is rotating at a 
constant speed and you are at
point A. After a short time interval,
in the absence of a force acting on
you, you would move to point B,
radially outward from point C. 
A centripetal force is required 
to change the direction of your
velocity and place you at point C.

Figure 11.9

⇀v you

FN

θ

B (no force)

C

A



Describing Rotational Motion
When an object is constantly rotating, physicists sometimes 
find it more convenient to describe the motion in terms of the 
frequency — the number of complete rotations per unit time — 
or the period — the time required for one complete rotation —
instead of the velocity of the object. You can express the cen-
tripetal acceleration and the centripetal force in these terms by
finding the relationship between the magnitude of the velocity of
an object in uniform circular motion and its frequency and period. 

Fc = m(4π2rf 2)
Fc = 4π2mrf 2

■ Substitute the above value for
acceleration into the equation for
the centripetal force.

ac = 4π2r( 1
f

)2

ac = 4π2rf 2

■ Substitute the above value for the
period into the equation for cen-
tripetal acceleration and simplify.

f = 1
T

or T = 1
f

■ The frequency is the inverse of 
the period.

Fc = mac

Fc = m
( 4π2r

T2

)
Fc = 4π2mr

T2

■ Substitute the above value for a
into the equation for centripetal
force and simplify. 

ac = v2

r

ac =
( 2πr

T

)2

r

ac =
4π2r2

T2

r

ac = 4π2r
T2

■ Substitute the above value for v
into the equation for centripetal
acceleration, a, and simplify.

v = 2πr
T

■ Substitute the distance and period
into the equation for velocity, v.

∆t = T
■ The time interval for one cycle is

the period, T. 

∆d = 2πr

■ The distance that an object travels
in one rotation is the circumfer-
ence of the circle. 

v = ∆d
∆t

■ Write the definition of velocity.
Since period and frequency are
scalar quantities, omit vector 
notations.
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atlphysics

If your school has probeware equip-
ment, visit the Internet site above
and follow the links for an in-depth
activity on circular motion.

PROBEWARE



I N V E S T I G A T I O N  11-B

Verifying the 
Circular Motion Equation

TARGET SKILLS

Performing and recording
Analyzing and interpreting
Communicating results

You have seen the derivation of the equation for
circular motion and solved problems by using
it. However, it is always hard to accept a theo-
retical concept until you test it for yourself. In
this investigation, you will obtain experimental
data for uniform circular motion and compare
your data to the theory. 

Problem
How well does the equation describe actual
experimental results? 

Equipment 
■ laboratory balance
■ force probeware or stopwatch 
■ ball on the end of a strong string
■ glass tube (15 cm long with fire-polished ends,

wrapped in tape)
■ metre stick
■ 12 metal washers
■ tape
■ paper clips

Wear impact-resistant safety goggles.
Also, do not stand close to other people and
equipment while doing this activity.

Procedure
Alternative A: Using Traditional Apparatus

1. Measure the mass of the ball.

2. Choose a convenient radius for swinging 
the ball in a circle. Use the paper clip or 
tape as a marker, as shown in the diagram at
the top of the next column, so you can keep
the ball circling within your chosen radius.

3. Measure the mass of one washer.

4. Fasten three washers to the free end of the
string, using a bent paper clip to hold them
in place. Swing the string at a velocity that
will maintain the chosen radius. Measure 
the time for several revolutions and use it 
to calculate the period of rotation.

5. Calculate the gravitational force on the 
washers (weight), which creates tension 
in the string. This force provides the 
centripetal force to keep the ball moving 
on the circular path.

6. Repeat for at least four more radii.

Alternative B: Using Probeware
1. Measure the mass of the ball.

2. Attach the free end of the string to a swivel
on a force probe, as shown in the diagram on
the next page. 

3. Set the software to collect force-time data
approximately 50 times per second. Start the
ball rotating at constant velocity, keeping the
radius at the proper value, and collect data
for at least 10 revolutions. 

tethered ball
or #4 two-hole
rubber stopper

paper clip

strong string

bent paper clip

glass tube,
wrapped
with tape

metal
washers

CAUTION
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4. Examination of the graph will show regular
variations from which you can calculate the
period of one revolution, as well as the 
average force.

5. Repeat for at least five different radii.

Analyze and Conclude
1. For each radius, calculate and record in your

data table the velocity of the ball. Use the
period and the distance the ball travels in
one revolution (the circumference of its 
circular path).

2. For each radius, calculate and record in 

your data table mv2

r
.

3. Graph Fc against mv2

r
. Each radius will 

produce one data point on your graph.

4. Draw the best-fit line through your data
points. How can you tell from the position 
of the points whether the relationship 

being tested, Fc = mv2

r
, actually describes 

the data reasonably well?

5. Calculate the slope of the line. What does 
the slope tell you about the validity of the
mathematical relationship?

6. Identify the most likely sources of error in
the experiment. That is, what facet of the
experiment might have been ignored, even
though it could have a significant effect on
the results?

Apply and Extend
Based on the experience you have gained in 
this investigation and the theory that you have
learned, answer the following questions about
circular motion. Support your answers in each
case by describing how you would experimen-
tally determine the answer to the question and
how you would use the equations to support
your answer.

7. How is the required centripetal force affected
when everything else remains the same but
the frequency of rotation increases?

8. How is the required centripetal force affected
when everything else remains the same but
the period of rotation increases?

9. If the radius of the circular path of an object
increases and the frequency remains the
same, how will the centripetal force change?

10. How can you keep the velocity of the object
constant while the radius of the circular 
path decreases?

Time (s)

2.0

4.0

6.0

0 4 8 12 16

F
or

ce
 (

N
)

one
revolution

force probe

to computer

glass tube,
wrapped
with tape

strong
string

C-clamp

fishing
swivel
force
probe

tethered
ball
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Banked Curves
Have you ever wondered why airplanes tilt or bank so
much when they turn, as the airplanes in the photograph
are doing? Now that you have learned that a centripetal
force is required in order to follow a curved path or 
turn, you probably realize that banking the airplane has
something to do with creating a centripetal force. Land
vehicles can use friction between the tires and the road
surface to obtain a centripetal force, but air friction (or
drag) acts opposite to the direction of the motion of the
airplane and cannot act perpendicular to the direction 
of motion. What force could possibly be used to provide
a centripetal force for an airplane?

When an airplane is flying straight and horizontally,
the design of the wings and the flow of air over them 
creates a lift force (L) that keeps the airplane in the air,
as shown in Figure 11.11. The lift must be equal in 
magnitude and opposite in direction to the weight of 
the airplane in order for the airplane to remain on a 
level path. When an airplane banks, the lift force is still 
perpendicular to the wings. The vertical component of 
the lift now must balance the gravitational force, while 
the horizontal component of the lift provides a centripetal 
force. The free-body diagram on the right-hand side of 
Figure 11.11 helps you to see the relationship of the forces 
more clearly.

When a pilot banks an airplane, the forces of gravity and lift
are not balanced. The resultant force is perpendicular to the direction that
the airplane is flying, thus creating a centripetal force.

Cars and trucks can use friction as a centripetal force. However,
the amount of friction changes with road conditions and can
become very small when the roads are icy. As well, friction causes
wear and tear on tires and causes them to wear out faster. For
these reasons, the engineers who design highways where speeds
are high and large centripetal forces are required incorporate
another source of a centripetal force — banked curves. Banked
curves on a road function in a way that is similar to the banking 
of airplanes. 

Figure 11.11
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When an airplane follows a
curved path, it must tilt or bank to generate 
a centripetal force.

Figure 11.10



Figure 11.12 shows you that the normal force of the road on a 
car provides a centripetal force when the road is banked, since 
a normal force is always perpendicular to the road surface. 

You can use the following logic to develop an equation relating
the angle of banking to the speed of a vehicle rounding a curve.
Since an angle is a scalar quantity, omit vector notations and use
only magnitudes. Assume that you wanted to know what angle of
banking would allow a vehicle to move around a curve with a
radius of curvature r at a speed v, without needing any friction 
to supply part of the centripetal force.

Notice that the mass of the vehicle does not affect the amount of
banking that is needed to drive safely around a curve. A semitrailer
and truck could take a curve at the same speed as a motorcycle
without relying on friction to supply any of the required centripetal
force. Apply what you have learned about banking to the following
problems.

C

C
r

r

FN

mg

FN sin θ
FN cos θ

θ

θθ

FN sin θ
FN cos θ

=
mv2

r
mg

sin θ
cos θ

=
v2

r
g

tan θ = v2

rg

■ Divide the second equation by the
first and simplify.

FN sin θ = Fc

FN sin θ = mv2

r

■ The horizontal component of the
normal force must supply the 
centripetal force.

FN cos θ = Fg

FN cos θ = mg

■ Since a car does not move in a 
vertical direction, the vertical 
component of the normal force must
be equal in magnitude to the force
of gravity.
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When you look at
a cross section of a car rounding a
curve, you can see that the only
two forces in a vertical plane that
are acting on the car are the force
of gravity and the normal force 
of the road. The resultant force 
is horizontal and perpendicular 
to the direction in which the car 
is moving. This resultant force 
supplies a centripetal force 
that causes the car to follow 
a curved path.

Figure 11.12



• A conical pendulum swings 
in a circle, as shown in the
diagram. Show that the form
of the equation relating the
angle that the string of the
pendulum makes with the
vertical to the speed of the
pendulum bob is identical to
the equation for the banking
of curves. The pendulum has
a length L, an angle θ with the 
vertical, a force of tension FT in the string, a weight mg, and
swings in a circular path of radius r. The plane of the circle is 
a distance h from the ceiling from which the pendulum hangs.

FT

L

h

θ

r

mg

Conceptual Problem
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Banked Curves and Centripetal Force
Canadian Indy racing car driver Paul Tracy set the speed record for time
trials at the Michigan International Speedway (MIS) in the year 2000.
Tracy averaged 378.11 km/h in the time trials. The ends of the 3 km oval
track at MIS are banked at 18.0˚ and the radius of curvature is 382 m. 

(a) At what speed can the cars round the curves without needing to
rely on friction to provide a centripetal force? 

(b) Did Tracy rely on friction for some of his required centripetal force?

Frame the Problem
■ The normal force of a banked curve provides a centripetal force to

help cars turn without requiring an excessive amount of friction.
■ For a given radius of curvature and angle of banking, there is one

speed at which the normal force provides precisely the amount of 
centripetal force that is needed.

Identify the Goal
(a) The speed, v, for which the normal force provides exactly the

required amount of centripetal force for driving around the curve

(b) Whether Tracy needed friction to provide an additional amount of
centripetal force

Variables and Constants
Known Implied Unknown
r = 382 m
θ = 18.0˚

vPT = 378.11 km
h

g = 9.81 m
s2 v

MODEL PROBLEM 

continued



Strategy Calculations

(a) A vehicle driving at 34.9 m/s could round the curve without needing
any friction for centripetal force.

(b) Tracy was driving three times as fast as the speed of 126 km/h at
which the normal force provides the needed centripetal force. Paul
had to rely on friction for a large part of the needed centripetal force.

Validate
An angle of banking of 18˚ is very large compared to the banking on 
normal highway curves. You would expect that it was designed for
speeds much higher than the highway speed limit. A speed of 126 km/h
is higher than highway speed limits.

20. An engineer designed a turn on a road so
that a 1225 kg car would need 4825 N of 
centripetal force when travelling around the
curve at 72.5 km/h. What is the radius of 
curvature of the road?

21. A car exits a highway on a ramp that is
banked at 15˚ to the horizontal. The exit
ramp has a radius of curvature of 65 m. If 
the conditions are extremely icy and the
driver cannot depend on any friction to help
make the turn, at what speed should the

driver travel so that the car will not skid off
the ramp?

22. An icy curve with a radius of curvature of
175 m is banked at 12˚. At what speed must
a car travel to ensure that it does not leave
the road?

23. An engineer must design a highway curve
with a radius of curvature of 155 m that can
accommodate cars travelling at 85 km/h. At
what angle should the curve be banked? 

PRACTICE PROBLEMS

v =
(
34.894 m

s

)( 3600 s
h

)( 1 km
1000 m

)
v = 125.619 km

h

v ≅ 126 km
h

Convert the velocity in m/s into km/h.

v =
√

(382 m)
(
9.81 m

s2

)
(tan 18.0˚)

v =
√

1217.61 m2

s2

v = 34.894 m
s

v ≅ 34.9 m
s

Substitute the numerical values and solve.

tan θ = v2

rg

v2 = rg tan θ

v =
√

rg tan θ

Write the equation that relates angle of banking,
speed, and radius of curvature, and solve for speed, v.
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You have studied just a few examples of circular motion that
you observe or experience nearly every day. Although you rarely
think about it, you have been experiencing several forms of 
circular motion every minute of your life. Simply existing on
Earth’s surface places you in uniform circular motion as Earth
rotates. In addition, Earth is revolving around the Sun. In the 
next chapter, you will apply many of the concepts you have just
learned about force and motion to the motion of planets, moons,
and stars, as well as to artificial satellites.
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1. Define uniform circular motion and
describe the type of acceleration that is 
associated with it.

2. Study the diagram in Figure 11.6 on
page 552. Explain what approximation was
made in the derivation that requires you to
imagine what occurs as the angle becomes
smaller and smaller.

3. What are the benefits of using the 
concept of centripetal acceleration rather
than working on a traditional Cartesian
coordinate system?

4. Explain how centripetal force differs
from common forces, such as the forces of
friction and gravity.

5. If you were swinging a ball on a string
around in a circle in a vertical plane, at
what point in the path would the string be
the most likely to break? Explain why. In
what direction would the ball fly when the
string broke?

6. Explain why gravity does not affect 
circular motion in a horizontal plane, and
why it does affect a similar motion in a 
vertical plane.

7. Describe three examples in which 
different forces are contributing the 
centripetal force that is causing an object 
to follow a circular path. 

8. When airplane pilots make very sharp
turns, they are subjected to very large 

g forces. Based on your knowledge of 
centripetal force, explain why this occurs.

9. A centrifugal force, if it existed, would
be directed radially outward from the 
centre of a circle during circular motion.
Explain why it feels as though you are
being thrown outward when you are riding
on an amusement park ride that causes you
to spin in a circle.

10. On a highway, why are sharp turns
banked more steeply than gentle turns? 
Use vector diagrams to clarify your answer.

11. Imagine that you are in a car on a major
highway. When going around a curve, the
car starts to slide sideways down the bank-
ing of the curve. Describe conditions that
could cause this to happen.

I

K/U

C

MC

C

C

K/U

K/U

C

K/U

K/U

11.2 Section Review

Parts of your catapult launch mechanism
will move in part of a circle. The payload,
once launched, will be a projectile.
■ How will your launch mechanism apply

enough centripetal force to the payload 
to move it in a circle, while still allowing
the payload to be released?

■ How will you ensure that the payload is
launched at the optimum angle for 
maximum range?

■ What data will you need to gather from 
a launch to produce the most complete 
possible analysis of the payload’s actual
path and flight parameters?

UNIT PROJECT PREP
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CAREERS IN PHYSICS

Physics Goes to the Fair!

There’s no backing down. You’ve paid for your ticket,
and you’re in your seat with the restraint bar in
place. Your heart is pounding as you look at the
track in front of you. You’re almost convinced you
have nothing to worry about, but in the back of
your mind, a worry flickers. Is this roller coaster
safe? Well, rest easy. You’ll be back on the fair-
ground in no time, thanks to the physics of roller
coaster design and the vigilance of Canada’s
provincial public safety inspectors.

Roller coasters have not always been safe. Early
track designs employed circular loops. When
coaster cars entered these loops at high speeds,
they encountered excessive normal forces, putting
riders at risk of whiplash and broken bones. When
designers tried to correct the problem by decreas-
ing the speed at which the cars entered the loops,
the cars become projectiles, unable to make it
through the loop without falling off the track.

Designers solved these problems with the
clothoid loop. Clothoid loops are shaped like tear
drops and have a constantly changing radius,
where the radius at the bottom of the loop is larger
than the radius at the top. The larger radius at the
bottom allows the cars to enter the loop at high
speeds. As the cars climb the loop, they are affect-
ed by gravity, but are still able to make it through
the loop and maintain contact with the track
because of the smaller radius at the top.

Once designers are confident they have ironed
out all the kinks in amusements rides, it is the safety
inspector’s turn to make sure the rides are safe for
the public. Alfred Byram is the Chief Public Safety
Inspector with the New Brunswick government,
and has worked for the past twenty-two years as
an inspector, testing and inspecting elevators, and
amusement rides at parks like Crystal Palace in
Moncton. 

Byram studied construction electricity at the
New Brunswick Community College in Saint John,
and then became a trained elevator mechanic
before joining the government as a safety inspec-
tor. Before he could inspect amusement rides,
Byram had to visit theme parks to gain onsite
experience. Safety inspectors must be trained in
mechanics, especially the mechanics of hydraulics.
In order to make sure rides pass Canada’s safety
standards, Byram inspects ride tracks to make sure
they are not worn, carts to make sure they are
attached and intact, and hydraulic hoses to make
sure they are in good working order. 

Standards also require that nondestructive testing
be done on all amusement rides. Nondestructive
testing is testing that does not destroy the part or
material being tested. An important test done on
amusement rides is magnetic particle inspection,
which uses magnetic fields and small magnetic
particles, such as iron filings, to detect flaws in 
ferromagnetic components.

According to Byram, safety inspectors not only
have to be good with parts, they have to be good
with people too. Being able to interact diplomati-
cally with amusement park owners and operators
makes his job a lot easier. As for any requirement
that inspectors be ride fanatics, Byram says there
isn’t one. Byram will only ride the Ferris wheel. He
says, “It’s all the thrill I need!”

Going Further
1. Most roller coaster tracks end with a series of

parabolic hills that culminate with a sharp, steep
drop. When riders descend the sharp drop they
briefly undergo free fall. What is free fall? What
kinds of forces are involved in free fall?


