
Throughout this chapter, you have been learning how to apply the
principles of Newtonian mechanics to realistic cases. You have
learned how to treat objects with finite dimensions instead of
point masses. You have been working with more than one mass
when they were exerting forces on each other through strings,
ropes, and cables. In this section, you will consider another type
of interaction between masses — collisions and explosions in
more than one dimension.

It would be extremely difficult to determine the forces on
each fragment of this exploding firecracker. What can you say about the
explosion in general?

Thus far in this chapter, you have had success by finding the
net force on an object or system and then applying Newton’s sec-
ond law and the kinematic equations to describe the motion of the
system. However, when analyzing collisions and explosions, it is
difficult to determine the forces that objects are exerting on each
other such as the fragments flying off in all directions in the pho-
tograph in Figure 10.19. Collision and explosion events will be
easier to analyze if you determine the motion of the objects before
and after they exert forces on each other and use the motion data
to perform analyses of the interaction.

You might recall, from Chapter 5, that a rearrangement of
Newton’s second law led to the concepts of  momentum and
impulse. Momentum is defined as the product of an object’s mass
and velocity as described in the following box. In Chapter 6, you
learned that momentum is conserved. The box that shows the
mathematical relationship that describes conservation of momentum

Figure 10.19

Collisions and Explosions10.4
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• Use vector analysis in two
dimensions for systems involving
two or more masses.

• Apply the laws of conservation
of momentum to two dimensional
collisions and explosions.

• Determine in which real-life 
situations involving elastic and
inelastic interactions the laws
of conservation of momentum
and energy are best used.

• elastic collision

• inelastic collision

 T E R M S
K E Y

O U T C O M E S
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is also repeated here. In Chapters 5 and 6, you applied these rela-
tionships to motion in one dimension only. Now you will extend
your skills to include two dimensions.

Quantity Symbol SI unit

mass of object A mA kg (kilograms)

mass of object B mB kg (kilograms)

velocity of object A 
before the collision ⇀vA

m
s

(metres per second)

velocity of object B 
before the collision ⇀vB

m
s

(metres per second)

velocity of object A 
after the collision ⇀v ′A

m
s

(metres per second)

velocity of object B 
after the collision ⇀v ′B

m
s

(metres per second)

mA
⇀vA + mB

⇀vB = mA
⇀v ′A + mB

⇀v ′B

⇀PA +⇀PB =⇀P ′A +⇀P ′B

LAW OF CONSERVATION OF MOMENTUM
The sum of the momenta of two objects before collision is
equal to the sum of their momenta after they collide.

Quantity Symbol SI unit

momentum ⇀p kg · m
s

(kilogram metres per second)

mass m kg (kilograms)

velocity ⇀v m
s

(metres per second)

Unit Analysis
(mass)(velocity) = kg · m

s
= kg · m

s
Note: Momentum does not have a unique unit of its own.

⇀p = m⇀v

DEFINITION OF MOMENTUM
Momentum is the product of an object’s mass and its velocity.
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When working with collisions,
instead of using subscripts such
as “2,” physicists often use 
a superscript symbol called a
“prime,” which looks like an
apostrophe, to represent the 
variables after a collision. The
variable is said to be “primed.”
Look for this notation in the box
on the right.

PHYSICS FILE



Collisions in Two Dimensions
Very few collisions are confined to one dimen-
sion, as anyone who has played billiards knows.
Nevertheless, you can work in one dimension at 
a time, because momentum is conserved in each
dimension independently. For example, consider
the car crash illustrated in Figure 10.20. Car A is
heading north and car B is heading east when 
they collide at the intersection. The cars lock
together and move off at an angle. You can find 
the total momentum of the entangled cars because
the component of the momentum to the north
must be the same as car A’s original momentum.
The eastward component of the momentum must
be the same as car B’s original momentum. You
can use the Pythagorean theorem to find the
resultant momentum, as shown in the following
problems.
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Momentum is conserved independ-
ently in both the north-south dimension and the
east-west dimension.

Figure 10.20

y

x
mB

mB

mA

mA

⇀vA

⇀vAB

B
⇀v θ

Applying Conservation of Momentum in Two Dimensions
A billiard ball of mass 0.155 kg is rolling directly away from 
you at 3.5 m/s. It collides with a stationary golf ball of mass
0.052 kg. The billiard ball rolls off at an angle of 15˚ clock-
wise from its original direction with a velocity of 3.1 m/s.
What is the velocity of the golf ball?

Frame the Problem
■ Sketch the vectors representing the momentum of the 

billiard ball and the golf ball immediately before and
just after the collision. It is always helpful to superim-
pose an x–y-coordinate system on the vectors so that
the origin is at the point of the contact of the two balls.
For calculations, use the angles that the vectors make
with the x-axis.

■ Momentum is conserved in the x and y directions 
independently.

■ The total momentum of the system (billiard ball and golf
ball) before the collision is carried by the billiard ball and 
is all in the positive y direction.

■ After the collision, both balls have momentum in both
the y direction and the x direction.

15˚

⇀v ′b = 3.1

y

x

m
s

3.5 m
s

⇀vb =

MODEL PROBLEM 

15˚

75˚

⇀v ′b = 3.1 m
s

3.5 m
s

⇀vb =

mb = 0.155 kg

mg = 0.052 kg

⇀v ′g = ?

θ

y

x

continued



■ Since the momentum in the x direction was zero
before the collision, it must be zero after the collision.
Therefore, the x-components of the momentum of 
the two balls after the collision must be equal in 
magnitude and opposite in direction.

■ The sum of the y-components of the two balls after the
collision must equal the momentum of the billiard ball
before the collision.

■ Use subscript “b” for the billiard ball and subscript “g”
for the golf ball.

■ Solve the problem in two ways — first using a scale
diagram of the momentum vectors to visualize the 
solution and second using the method of components
to obtain a precise answer.

Identify the Goal
The velocity, ⇀v ′g , of the golf ball after the collision

Variables and Constants
Known Implied Unknown

mb = 0.155 kg

mg = 0.052 kg

⇀vb = 3.5 m
s

[forward] ⇀vg = 0.00 m
s

⇀v ′g

⇀v ′b = 3.1 m
s

[15˚ clockwise from original]

Method I
Strategy Calculations

⇀p = m⇀v∣∣⇀pb

∣∣ = (0.155 kg)
(
3.5 m

s

)
∣∣⇀pb

∣∣ = 0.5425 kg·m
s∣∣⇀p ′b

∣∣ = (0.155 kg)
(
3.1 m

s

)
∣∣⇀p ′b

∣∣ = 0.4805 kg·m
s

Calculate the magnitudes of momen-
tum vectors of the billiard ball before
and after the collision.

⇀pb +⇀pg =⇀p ′b +⇀p ′g
⇀p ′g =⇀pb +⇀pg −⇀p ′b
⇀pg = 0
⇀p ′g =⇀pb −⇀p ′b

Use the equation for the conservation
of momentum and solve for the
unknown momentum of the golf ball
after the collision.

506 MHR • Unit 5  Force, Motion, Work, and Energy

When you are working with many
bits of data in one problem, it is
often helpful to organize the 
data in a table such as the one
shown here.

PROBLEM TIP

Object

before

after

A

B

total

A

B

total

Px Py

continued from previous page



The velocity of the golf ball is 2.6 m/s at an angle of 34˚ 
clockwise from the negative x axis.

Method II
Strategy Calculations

v ′gx = −
(0.155 kg)(3.1 m

s cos 75˚)
0.052 kg

v ′gx = −2.3916 m
s

Substitute values and solve. 

0.0 kg · m
s

= mbv ′bx + mgv ′gx

mgv ′gx = −mbv ′bx

v ′gx = − mbv ′bx
mg

Note that the x-component of the
momentum of both balls was zero
before the collision. Then solve for the
x-component of the velocity of the golf
ball after the collision.

mbvbx + mgvgx = mbv ′bx + mgv ′gx

Write the expression for the conserva-
tion of momentum in the x direction.

⇀p ′g = mg
⇀v ′g

⇀v ′g =
⇀p ′g
mg∣∣⇀v ′g

∣∣ =
0.134 kg·m

s
0.052 kg∣∣⇀v ′g

∣∣ = 2.577 m
s∣∣⇀v ′g

∣∣ ≅ 2.6 m
s

Use the definition of momentum to
solve for the velocity of the golf ball.

⇀p g′ = (0.67 cm)

(
0.20

kg·m
s

cm

)

⇀p g′ = 0.134 kg·m
s

Use the scale factor to determine 
magnitude of ⇀pg′ .

θ = 34˚Measure angle of ⇀pg′ .

⇀pg′ is 0.67 cm longMeasure the length of ⇀pg′ .

On a coordinate system, make a scale
diagram with the tail of ⇀pb at the 
origin.

Draw ⇀pb′ with the tail at the tip of ⇀pb .

Draw −⇀pb′ with the tail at the tip of ⇀pb .

Add ⇀pb and −⇀pb′ by drawing the
resultant vector from the tail of ⇀pb
to the tip of −⇀pb′. This is vector ⇀pg′ .
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continued

θ

⇀p 'b

⇀p 'g

⇀−p 'b

⇀pb

y

x

15˚

scale: 1.0 cm = 0.20 kg m
s



Strategy Calculations

The velocity of the golf ball after the collision is 2.8 m/s at 32˚
clockwise from the negative x-axis. (At more advanced levels, 
you will be expected to report angles counterclockwise from the
positive x-axis. In this case, the angle would be 180˚ − 32˚ = 148˚
counterclockwise from the x-axis.)

Validate
Since all of the momentum before the collision was in the positive y direction,
the y-component of momentum after the collision had to be in the positive
y direction, which it was. Since there was no momentum in the x direction
before the collision, the x-components of the momentum after the collision
had to be in opposite directions, which they were. The scale diagram
method and the method of components were in good agreement.

tan θ = v ′gy

v ′gx

tan θ =
1.507 m

s
2.3916 m

s

θ = tan−1 0.6301
θ = 32.22˚
θ ≅ 32˚

Use the tangent function to find the
direction of the velocity vector.

Since the x-component is negative 
and the y-component is positive, the
vector is in the second quadrant. Use
positive values to find the magnitude
of the reference angle.

|⇀v ′g|2 = v ′gx
2 + v ′gy

2

|⇀v ′g|2 =
(
−2.3916 m

s

)2
+

(
1.507 m

s

)2

|⇀v ′g|2 = 5.7198 m2

s2 + 2.271 m2

s2

|⇀v ′g|2 = 7.9908 m2

s2

|⇀v ′g| = 2.8268 m
s

|⇀v ′g| ≅ 2.8 m
s

Use the Pythagorean theorem to find
the magnitude of the resultant velocity
vector of the golf ball.

mbvby + mgvgy = mbv ′by + mgv ′gy

mbvby + 0.0 kg · m
s = mbv ′by + mgv ′gy

mgv ′gy = mbvby − mbv ′by

v ′gy = mbvby − mbv ′by

mg

v ′gy =
(0.155 kg)(3.5 m

s ) − (0.155 kg)(3.1 m
s sin 75˚)

0.052 kg

v ′gy = 1.507 m
s

Carry out the same procedure for the
y-components.
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15˚

32˚

⇀v ′b = 3.1 m
s

3.5 m
s

⇀vb =

⇀v ′g ≅ 2.8 m
s

v ′gx = −2.3916 m
s

v ′gy = 1.507 m
s

y
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Use both the scale diagram method and the
method of components to solve each problem.

35. A 0.150 kg billiard ball (A) is rolling toward
a stationary billiard ball (B) at 10.0 m/s. After
the collision, ball A rolls off at 7.7 m/s at an
angle of 40.0˚ clockwise from its original
direction. What is the speed and direction 
of ball B after the collision?

36. A bowling ball with a mass of 6.00 kg rolls
with a velocity of 1.20 m/s toward a single
standing bowling pin that has a mass of
0.220 kg. When the ball strikes the bowling

pin, the pin flies off at an angle of 70.0˚
counterclockwise from the original direction
of the ball, with a velocity of 3.60 m/s. What
was the velocity of the bowling ball after it
hit the pin?

37. Car A (1750 kg) is travelling due south and
car B (1450 kg) is travelling due east. They
reach the same intersection at the same time
and collide. The cars lock together and move
off at 35.8 km/h[E31.6˚S]. What was the
velocity of each car before they collided?

PRACTICE PROBLEMS
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Angular Momentum
Why is a bicycle easy to balance when you are riding, but falls
over when you come to a stop? Why does a toy gyroscope, like the
one in Figure 10.21, balance on a pointed pedestal when it is spin-
ning, but falls off the pedestal when it stops spinning? The answer
lies in the conservation of angular momentum.

When an object is moving on a curved path or rotating, it has
angular momentum. Angular momentum and linear (or transla-
tional) momentum are similar in that they are both dependent on
an object’s mass and velocity. Analyze Figure 10.22 to find the
third quantity that affects angular momentum. 

www.mcgrawhill.ca/links/
atlphysics

For information on current accident-
investigation research topics and
technological developments related to
vehicle safety, go to the above Internet
site and click on Web Links.

Web Link

As the 
distance from the centre
of rotation increases, 
a unit of mass must
move faster in order 
to maintain a constant
rate of rotation.

Figure 10.22

When a
spinning object begins 
to fall, its angular
momentum resists the
direction of the fall.

Figure 10.21



Picture the movement of a unit of mass in each of the two
wheels illustrated in Figure 10.22. If the two wheels are rotating 
at the same rate, each unit of mass in the large wheel is moving
faster than a unit of mass in the small wheel. Thus, r, the distance
of a mass from the centre of rotation, affects the angular momen-
tum. The magnitude of the angular momentum, L, of a particle that
is moving in a circle is equal to the product of its mass, velocity,
and distance from the centre of rotation, or L = mvr. You will not
pursue a quantitative study of angular momentum any further in
this course, but it is essential to be aware of the law of conserva-
tion of angular momentum in order to have a complete picture of
the important conservation laws of physics. Similar to conserva-
tion of linear momentum, the angular momentum of an isolated
system is conserved.

Explosions
Take another look at the photograph in Figure 10.19. How can you
analyze something as complex as an explosion? Start with condi-
tions before the explosion. Since there was no motion at all, the
momentum was zero. Therefore, the total momentum of all of the
parts after the explosion must also be zero according to conservation
of momentum. The situation is very much like the concept of recoil
that you studied in chapter 7. You can even think of recoil as an
explosion in which two fragments are produced and they move in
one dimension. Since momentum is conserved independently in
each dimension, you can treat the fragments from an explosion 
in exactly the same way that you treated the two objects in recoil.
The sum of the components of the momentum of all of the fragments
in each dimension after the explosion must be zero. The following
model problem shows you how to work with the fragments in two
dimensions. Real explosions, of course, occur in three dimensions
which does not require any new concepts. You would simply work
with the x-, y-, and z-components of the momentum instead of just
the x- and y-components.
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Although Kepler knew nothing
about angular momentum, his
second law, the law of areas
which you will study in Chapter 12,
is an excellent example of the
conservation of angular momen-
tum. With somewhat complex
mathematics, it is possible to
write the law of conservation of
angular momentum for a planet 
in orbit and show that it is equiva-
lent to Kepler’s second law.

PHYSICS FILE



A 25 g spherical fire cracker explodes into three parts. You were
able to get a photograph taken under a strobe light of two dimen-
sions of the explosion. However, one of the fragments was out of
the range of the photograph. After the explosion, you measured 
the mass of the two fragments and calculated the velocity of the
fragments from the photograph. By superimposing a coordinate
system on the photograph, you measured the angles at which the
fragments moved. A 6.0 g fragment moved off at an angle of 35˚
with the positive x axis at a velocity of 42 m/s. An 11 g fragment
moved off at an angle of 21˚ cw with the negative x axis. What
was the velocity of the third fragment?

Frame the Problem
■ Make a sketch of the momentum vectors after the explosion.

■ After an explosion, the vector sum of the momentum of all of 
the fragments must be zero.

Identify the Goal
the velocity, ⇀v3, of the third fragment after the explosion

Variables and Constants
Known Unknown
m1 = 6.0 g m2 = 11 g m3

⇀v1 = 42 m
s

⇀v2 = 33 m
s

⇀v3

θ1 = 35˚ccw θ2 = 21˚cw θ3

from x axis from −x axis

Strategy Calculations

p2x = −
∣∣⇀p2

∣∣ cos 21˚

p2x = −
(

0.363 kg·m
s

)
(0.93358)

p2x = −0.33889 kg·m
s

p1x =
∣∣⇀p1

∣∣ cos 35˚

p1x =
(

0.252 kg·m
s

)
(0.81915)

p1x = 0.206426 kg·m
s

Find the x- and y-components
of the momentum of fragments
1 and 2.

⇀p = m⇀v
⇀p2 = (0.011 kg)

(
33 m

s

)
⇀p2 = 0.363 kg·m

s

⇀p = m⇀v
⇀p1 = (0.006 kg)

(
42 m

s

)
⇀p1 = 0.252 kg·m

s

Find the magnitude of the
momentum of fragments 1 
and 2.

MODEL PROBLEM 
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⇀
F1 ⇀

F2

F3y

F1y
F2y

F3x

F2x
F1x

⇀
F3

(11 g
fragment) (6.0 g

fragment)

?

y

x35˚

21˚

continued



Strategy Calculations

θ = tan−1 0.274628 kg·m
s

0.132464 kg·m
s

θ = 64.250˚

θ ≅ 64˚

Since the x-component of the
momentum is positive and the
y-component is negative, the
vector lies in the fourth quadrant.

tan θ = p3y

p3x

θ = tan−1 p3y

p3x

Use the tangent function to find
the direction of the momentum
of fragment 3.

∣∣⇀p3

∣∣2 = p2
3x + p2

3y∣∣⇀p3

∣∣2 =
(

0.132464 kg·m
s

)2

+
(

−0.274628 kg·m
s

)2

∣∣⇀p3

∣∣2 = 0.017547
(

kg·m
s

)2

+ 0.0754205
(

kg·m
s

)2

∣∣⇀p3

∣∣2 = 0.0929673
(

kg·m
s

)2

∣∣⇀p3

∣∣ = 0.30491
(

kg·m
s

)
∣∣⇀p3

∣∣ ≅ 0.30
(

kg·m
s

)

Use the Pythagorean theorem 
to find the magnitude of the
momentum of fragment 3.

p3y + 0.14454 kg·m
s

+ 0.130088 kg·m
s

= 0.0

p3y = −0.14454 kg·m
s

− 0.130088 kg·m
s

p3y = −0.274628 kg·m
s

p3x + 0.206426 kg·m
s

− 0.33889 kg·m
s

= 0.0

p3x = −0.206426 kg·m
s

+ 0.33889 kg·m
s

p3x = 0.132464 kg·m
s

Solve for the components of 
the momentum of the third
fragment.

x-components y-components

0.206426

−0.33889

0.0

0.14454

0.130088

0.0

p
3y

p
3x

kg m
s

kg m
s

kg m
s

kg m
s

Make a table of the components
of all three fragments and the
total.

p2y =
∣∣⇀p2

∣∣ sin 21˚

p2y =
(

0.363 kg·m
s

)
(0.358368)

p2y = 0.130088 kg·m
s

p1y =
∣∣⇀p1

∣∣ sin 35˚

p1y =
(

0.252 kg·m
s

)
(0.573576)

p1y = 0.14454 kg·m
s

Since fragment 2 is in the sec-
ond quadrant, the x-component
of the momentum is negative.

512 MHR • Unit 5  Force, Motion, Work, and Energy

continued from previous page



Energy and Momentum in Collisions
Momentum is conserved in the two collisions pictured in Figure
10.23, but the two cases are quite different. When the metal spheres
in the Newton’s cradle collided, both momentum and kinetic 
energy were conserved. When the cars in the photograph crashed,
kinetic energy was not conserved. This feature divides all collisions
into two classes. Collisions in which kinetic energy is conserved
are said to be elastic. When kinetic energy is not conserved, the
collisions are inelastic.
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The velocity of fragment 3 was 38 m/s at an angle of 64˚ cw from
the positive x axis.

Validate 
All of the units cancelled properly to give m/s which is correct for
velocity. The magnitude of the velocity of fragment 3 is of the same
range as the velocities of fragments 1 and 2 which is to be expected.
The angle is reasonable based on the original sketch.

38. You accidentally dropped a 3.5 kg glass platter.
Before it hit the floor, the motion was entirely
in the vertical direction. When it hit the floor,
it broke into three pieces and they all moved
out in the plane of the floor. Imagine a coor-
dinate system on the floor. Piece 1 had a
mass of 1.3 kg and it moved off with a velocity

of 1.8 m/s at an angle of 52˚ counterclockwise
from the positive x axis. Piece 2 with a mass
of 1.2 kg moved off with a velocity of 2.5 m/s
at an angle of 61˚ clockwise from the negative
x axis. Find the mass and the velocity of
piece 3.

PRACTICE PROBLEMS

∣∣⇀p ∣∣ = m
∣∣⇀v ∣∣

∣∣⇀v ∣∣ =
∣∣⇀p ∣∣
m∣∣⇀v ∣∣ =

0.30491 kg·m
s

0.0080 kg∣∣⇀v ∣∣ = 38.11375 m
s∣∣⇀v ∣∣ ≅ 38 m

s

Find the velocity of fragment 3
from the definition of 
momentum.

6.0 g + 11 g + m3 = 25 g

m3 = 25 g − 6.0 g − 11 g

m3 = 8.0 g

Find the mass of fragment 3
from the total original mass and
the mass of fragments 1 and 2.



How do the collisions pictured here differ from each other?

You can determine whether a collision is elastic or inelastic by
calculating both the momentum and the kinetic energy before and
after the collision. Since momentum is always conserved at the
instant of the collision, you can use the law of conservation of
momentum to find unknown values for velocity. Then, use the
known and calculated values for velocity to calculate the total
kinetic energy before and after the collision. You will probably
recall that the equation for kinetic energy is E = 1

2 mv 2.

Figure 10.23
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Classifying a Collision
A 0.0520 kg golf ball is moving east with a velocity of 2.10 m/s when it
collides, head on, with a 0.155 kg billiard ball. If the golf ball rolls 
directly backward with a velocity of –1.04 m/s, was the collision elastic?

Frame the Problem

Identify the Goal
Is the total kinetic energy of the system before the collision, Ekg, 
equal to the total kinetic of the system after the collision, E′kg + E′kb?

Variables and Constants
Known Implied Unknown

mg = 0.0520 kg

mb = 0.155 kg

vg = +2.10 m
s

v ′g = −1.04 m
s

vb = 0.0 m
s

v ′b
Ekg

E′kg

E′kb

■ Momentum is always conserved in a collision.

■ If the collision is elastic, kinetic energy must
also be conserved. 

■ The motion is in one dimension, so only 
positive and negative signs are necessary 
to indicate directions.

MODEL PROBLEM 
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Strategy Calculations

The kinetic energies before and after the collision are the same to the third 
decimal place. Therefore, the collision was probably elastic.

Validate
Although the kinetic energies before and after the collision differ 
in the fourth decimal place, the difference is less than 1%. Since 
the data contained only three significant digits, this difference could
easily be due to the precision of the measurement. Therefore, it is
fair to say that the collision was elastic.

39. A billiard ball of mass 0.155 kg moves with 
a velocity of 12.5 m/s toward a stationary 
billiard ball of identical mass and strikes it
with a glancing blow. The first billiard ball
moves off at an angle of 29.7˚ clockwise 
from its original direction, with a velocity of
9.56 m/s. Determine whether the collision
was elastic.

40. Car A, with a mass of 1735 kg, was travelling
north at 45.5 km/h and Car B, with a mass of
2540 kg, was travelling west at 37.7 km/h
when they collided at an intersection. If the
cars stuck together after the collision, what
was their combined momentum? Was the
collision elastic or inelastic?

PRACTICE PROBLEMS

E′kg + E′kb = 0.028 12 J + 0.085 99 J
E′kg + E′kb = 0.114 12 J

E′kb = 1
2 mbv ′b2

E′kb = 1
2 (0.155 kg)

(
1.0534 m

s

)2

E′kb = 0.086 00 J

E′kg = 1
2 mgv ′g2

E′kg = 1
2 (0.0520 kg)

(
−1.04 m

s

)2

E′kg = 0.028 12 J

Calculate the sum of the kinetic energies of
the balls after the collision.

Ekg = 1
2 mgv2

g

Ekg = 1
2 (0.0520 kg)

(
2.10 m

s

)2

Ekg = 0.114 66 J

Calculate the kinetic energy of the golf ball
before the collision.

mgvg + mbvb = mgv ′g + mbv ′b
mgvg + 0.0 − mgv ′g = mbv ′b

v ′b = mgvg − mgv ′g
mb

v ′b =
(0.0520 kg)(2.10 m

s ) − (0.0520 kg)(−1.04 m
s )

0.155 kg

v ′b = 1.0534 m
s

Since momentum is always conserved, use
the law of conservation of momentum to 
find the velocity of the billiard ball after the
collision.



I N V E S T I G A T I O N  10-B

Collisions in Two Dimensions

TARGET SKILLS

Initiating and planning
Performing and recording
Analyzing and interpreting

You can investigate the conservation of momen-
tum and energy in two dimensional collisions
in several ways. If you have access to an air table,
strobe light, and Polaroid™ camera, you can use
the procedure below. Alternatively, your teacher
might provide you with simulations of the air
table. If this is your option, use the simulations
and follow the directions under “Analyze and
Conclude.” A final option is to find a simulation
of two dimensional collisions on the Internet. 
If you choose this option, follow the directions
that accompany the simulation.

Problem
Verify the law of conservation of momentum in
two dimensions.

Equipment
■ air table
■ 2 pucks
■ strobe light
■ Polaroid™ camera
■ ruler
■ protractor
■ laboratory balance

Procedure
1. Using the laboratory balance, determine the

mass of each of two pucks. If the pucks have
nearly the same mass, add some mass to one
of the pucks with modelling clay.

2. With the air pressure on, place one of the
pucks near the centre of the table. If it will
not remain still, one partner should very 
gently hold it in place. Push a second puck
toward the stationary puck so it will make 
a glancing collision with the central puck.
Observe the motion of the pucks before and
after the collision. Practice making the colli-
sion until you are confident you can do it
every time.

3. Place two markers (masking tape) at two
points on the edge of the table to use to
determine the scale of the photographs.

4. Set up the strobe light so it is aimed toward
the centre of the air table.

5. Set up the Polaroid™ camera so the centre of
the image will be near the centre of the table.
Set the shutter speed so that it will get all of
the motion of the pucks before and after the
collision.

6. Turn off the room lights and take a picture of
a collision. Take enough photographs so that
each pair of partners will have one to analyze.

Analyze and Conclude
1. Determine the scale of the photograph by

measuring the distance between your markers
on the table and the distance between the
markers in the photograph.

2. On the photograph, measure the distances
that the pucks moved before and after the 
collision. Calculate the actual distances using
the scale that you determined in Step 7.

3. Measure the angles that the pucks took after
the collision relative to the direction of the
puck that was moving before the collision.

4. Using the rate at which the strobe light was
flashing, determine the time between flashes.

5. Calculate the velocity, momentum, and 
kinetic energy of each puck before and after
the collision.

6. Compare the total momentum of the pucks
before and after the collision. Comment on
how well the motion of the pucks obeyed 
the law of conservation of momentum.

7. Compare the total kinetic energy of the pucks
before and after the collision. Comment on
whether the collision was elastic or inelastic.
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Elastic Collisions
By now, you have probably concluded that when objects collide,
become deformed, and stick together, the collision is inelastic.
Physicists say that such a collision is completely inelastic.
Conversely, when hard objects such as billiard balls collide,
bounce off each other, and return to their original shape, they 
have undergone elastic collisions. Very few collisions are perfectly
elastic, but in many cases, the loss of kinetic energy is so small
that it can be neglected. 

Since both kinetic energy and momentum are conserved in per-
fectly elastic collisions, as many as four independent equations
can be used to solve problems. Since you have four equations, you
can solve for up to four unknown quantities. When combining
these equations, however, the math becomes quite complex for all
cases except head-on collisions, for which all motion is in one
dimension. 

An analysis of head-on collisions yields some very informative
results, however. For example, if you know the velocities of the
two masses before a collision, you can determine what the veloci-
ties will be after the collision. The following derivation applies to
a mass, m1, that is moving toward a stationary mass, m2. Follow
the steps to find the velocities of the two objects after the collision
in terms of their masses and the velocity of the first mass before
the collision. Since the motion in head-on collisions is in one
dimension, vector notations will not be used.

m1(v1 − v ′1) = m2v ′2
m1(v2

1 − v ′12) = m2v ′22

■ Factor m1 out of the left-hand
side of both equations.

m1v1 − m1v ′1 = m2v ′2
m1v2

1 − m1v ′12 = m2v ′22

■ Algebraically rearrange both
equations so that terms
describing mass 1 are on 
the left-hand side of the
equations and terms describ-
ing mass 2 are on the 
right-hand side.

m1v2
1 = m1v ′12 + m2v ′22

■ Multiply by 2 both sides of
the equation for conservation
of kinetic energy.

m1v1 + 0 = m1v ′1 + m2v ′2
1
2 m1v2

1 + 0 = 1
2 m1v ′12 + 1

2 m2v ′22

■ Write the equations for the
conservation of momentum
and kinetic energy for a 
perfectly elastic collision,
inserting zero for the velocity
of the second mass before 
the collision.
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In science, the word “elastic” does
not mean “easily stretched.” In fact, 
it can mean exactly the opposite. For
example, glass is very elastic, up to its
breaking point. Also, “elastic” is the
opposite of “plastic.” Find the correct
meanings of the words “elastic” 
and “plastic” and then explain why
“elastic” is an appropriate term to
apply to collisions in which kinetic
energy is conserved.

Language Link



m1v1 − m1v ′1 = m2v ′2
m1v1 − m1(v ′2 − v1) = m2v ′2
m1v1 − m1v ′2 + m1v1 = m2v ′2
2m1v1 = m1v ′2 + m2v ′2
2m1v = (m1 + m2)v ′2

v ′2 =
(

2m1
m1 + m2

)
v1

m1v1 − m1v ′1 = m2v ′2
m1v1 − m1v ′1 = m2(v1 + v ′1)
m1v1 − m1v ′1 = m2v1 + m2v ′1
m1v ′1 + m2v ′1 = m1v1 − m2v1

v ′1(m1 + m2) = v1(m1 − m2)

v ′1 =
(

m1 − m2
m1 + m2

)
v1

■ Develop two separate equa-
tions by substituting the 
values for v ′1 and v ′2 above
into the equation for 
conservation of momentum,
m1v1 − m1v ′1 = m2v ′2. Expand
and rearrange the equations
and then solve for v ′1 (left)
and v ′2 (right). 

1
(v1 + v ′1)

= 1
v ′2

v ′2 = v1 + v ′1
v ′1 = v ′2 − v1

■ Simplify. Solve the equation
for v ′2 by inverting. Also,
solve the equation for v ′1.

(v1 − v ′1)
(v1 − v ′1)(v1 + v ′1)

= v ′2
v ′22

■ Notice that the masses can-
cel. Expand the expression 
in the denominator on the
left. Notice that it is the 
difference of perfect squares.

m1(v1 − v ′1)
m1(v2

1 − v ′12)
= m2v ′2

m2v ′22
■ Divide the first equation by

the second equation.

The two equations derived above allow you to find the veloci-
ties of two masses after a head-on collision in which a moving
mass collides with a stationary mass. Without doing any calcula-
tions, however, you can draw some general conclusions. First,
consider the case in which the two masses are identical.

Case 1: m1 = m2

Since the masses are equal, call them both “m.” Substitute m into
the two equations for the velocities of the two masses after the 
collision. Then, mathematically simplify the equations.

v ′2 =
(

2m1
m1 + m2

)
v1

v ′2 =
( 2m

m + m

)
v1

v ′2 =
( 2m

2m

)
v1

v ′2 = v1

v ′1 =
(

m1 − m2
m1 + m2

)
v1

v ′1 =
( m − m

m + m

)
v1

v ′1 =
( 0

m + m

)
v1

v ′1 = 0
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When one moving mass collides
head on with an identical station-
ary mass, the first mass stops.
The second mass then moves
with a velocity identical to the
original velocity of the first mass.

v1

m2

m2

m2

m1

m1

m1 v2′



Case 2: m1 >>> m2

Since mass 1 is much larger than mass 2, you can almost ignore
the mass of the second object in your calculations. You can there-
fore make the following approximations.

m1 − m2 ≅ m1 and m1 + m2 ≅ m1

Substitute these approximations into the two equations for the
velocities of the two masses after the collision. Then, mathemati-
cally simplify the equations.

Case 3: m1 <<< m2

Since mass 1 is much smaller than mass 2, you can ignore the
mass of the first object in your calculations. You can therefore
make the following approximations.

m1 − m2 ≅ − m2 and m1 + m2 ≅ m2 and m1 ≅ 0

Substitute these approximations into the two equations for the
velocities of the two masses after the collision. Then mathemati-
cally simplify the equations.

• Using the special cases of elastic collisions, qualitatively explain
what would happen in each of the following situations.

(a) A bowling ball collides head on with a single bowling pin.

(b) A golf ball hits a tree.

(c) A marble collides head on with another marble that is not
moving.

Conceptual Problems

v ′2 =
(

2m1
m1 + m2

)
v1

v ′2 ≅
(

0
m2

)
v1

v ′2 ≅ 0

v ′1 =
(

m1 − m2
m1 + m2

)
v1

v ′1 ≅
(

−m2
m2

)
v1

v ′1 ≅ − v1

v ′2 =
(

2m1
m1 + m2

)
v1

v ′2 ≅
(

2m1
m1

)
v1

v ′2 ≅ 2v1

v ′1 =
(

m1 − m2
m1 + m2

)
v1

v ′1 ≅
(

m1
m1

)
v1

v ′1 ≅ v1
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When one moving mass collides
head on with a much smaller 
stationary mass, the first mass
continues at nearly the same
speed. The second mass then
moves with a velocity that is
approximately twice the original
velocity of the first mass.

⇀v1

m2

m2

m2

m1

m1

m1
⇀v2′⇀v1′

When one moving mass collides
head on with a much larger 
stationary mass, the first mass
bounces backward with a velocity
opposite in direction and almost
the same in magnitude as its 
original velocity. The motion 
of the second mass is almost
imperceptible.

⇀v1
m2

m2

m2

m1

m1

m1
⇀v2′⇀v1′



• Cars, trucks, and motorcycles do not undergo elastic collisions,
but the general trend of the motion is similar to the motion of
objects involved in elastic collisions. Describe, in very general
terms, what would happen in each of the following cases. In
each case, assume that the vehicles did not become attached 
to each other.

(a) A very small car runs into the back of a parked tractor-trailer.

(b) A mid-sized car runs into the back of another mid-sized car
that has stopped at a traffic light.

(c) A pickup truck runs into a parked motorcycle.

Inelastic Collisions
When you are working with inelastic collisions, you can apply
only the law of conservation of momentum to the motion of the
objects at the instant of the collision. Depending on the situation,
however, you might be able to apply the laws of conservation of
energy to motion just before or just after the collision. For exam-
ple, a ballistic pendulum can be used to measure the velocity of a
projectile such as a bullet, as illustrated in Figure 10.24. When the
bullet collides with the wooden block of the ballistic pendulum, it
becomes embedded in the wood, making the collision completely
inelastic. 

After the collision, however, you can apply the law of conserva-
tion of mechanical energy to the motion of the pendulum. The
kinetic energy of the pendulum at the instant after the collision is
converted into potential energy of the pendulum bob. By measuring
the height to which the pendulum rises, you can calculate the
velocity of the bullet just before it hit the pendulum, as shown 
in the following model problem.

mb

mPb
⇀v

h
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A ballistic pendu-
lum is designed to have as little
friction as possible. Therefore,
you can assume that, at the top
of its swing, the gravitational
potential energy of the pendu-
lum bob is equal to the kinetic
energy of the pendulum bob at
the lowest point of its motion.

Figure 10.24



Energy Conservation Before and After a Collision
1. A forensic expert needed to find the velocity of a bullet fired from a

gun in order to predict the trajectory of a bullet. He fired a 5.50 g 
bullet into a ballistic pendulum with a bob that had of mass 1.75 kg.
The pendulum swung to a height of 12.5 cm above its rest position
before dropping back down. What was the velocity of the bullet just
before it hit and became embedded in the pendulum bob?

Frame the Problem
■ Sketch the positions of the bullet and pendulum 

bob just before the collision, just after the colli-
sion, and with the pendulum at its highest point.

■ When the bullet hit the pendulum, momentum
was conserved.

■ If you can find the velocity of the combined bullet
and pendulum bob after the collision, you can use
conservation of momentum to find the velocity of
the bullet before the collision.

■ The collision was completely inelastic so kinetic
energy was not conserved. 

■ However, you can assume that the friction of the pendulum is
negligible, so mechanical energy of the pendulum was conserved.

■ The gravitational potential energy of the combined masses at the
highest point of the pendulum is equal to the kinetic energy of the
combined masses at the lowest point of the pendulum.

■ If you know the kinetic energy of the combined masses just after the 
collision, you can find the velocity of the masses just after the collision.

■ Use the subscripts “b” for the bullet and “p” for the pendulum.

Identify the Goal
The velocity, vb, of the bullet just before it hit the ballistic pendulum

Variables and Constants
Known Implied Unknown
mb = 5.50 g
mp = 1.75 kg

∆h = 12.5 cm g = 9.81 m
s2

⇀vb
⇀vp

Eg

Ek

12.5 cm

Bullet
has initial
velocity.

Momentum
is conserved.

Kinetic energy
is not conserved.

Mechanical
energy is

conserved.

MODEL PROBLEMS
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Strategy Calculations

The velocity of the bullet just before the collision was about 500 m/s in
the positive direction.

Validate
In both calculations, the units cancelled to give metres per second, which is 
correct for velocity. The velocity of 500 m/s is a reasonable velocity for a bullet.

2. A block of wood with a mass of 0.500 kg slides across the floor toward
a 3.50 kg block of wood. Just before the collision, the small block is
travelling at 3.15 m/s. Because some nails are sticking out of the
blocks, the blocks stick together when they collide. Scratch marks on
the floor show that they slid 2.63 cm before coming to a stop. What is
the coefficient of friction between the wooden blocks and the floor?

mb
⇀vb + mp

⇀vp = mb
⇀v ′b + mp

⇀v ′p

mb
⇀vb + 0 = (mb + mp)⇀v ′b/p

⇀vb = (mb + mp)v ′b/p

mb

⇀vb =

[
5.50 g

(
1 kg

1000 g

)
+ 1.75 kg

]
1.566 m

s

5.50 g
(

1 kg
1000 g

)
⇀vb =

(1.7555 kg)1.566 m
s

0.005 50 kg
⇀vb = 499.8387 m

s
⇀vb ≅ 5.00 × 102 m

s
[in positive direction]

Apply the conservation of momentum to
find the velocity of the bullet before the
collision. Convert all units to SI units.

1
2 mv2

bottom = mg∆h

v2
bottom = 2g∆h

vbottom =
√

2g∆h

vbottom =
√

2
(
9.81 m

s2

)
(12.5 cm)

( 1 m
100 cm

)

vbottom =
√

2.4525 m2

s2

vbottom = ±1.566 m
s

Substitute the expressions for kinetic 
energy and gravitational potential energy
that you learned in Chapter 7. Solve for
velocity. Convert all units to SI units.

Define the direction of the bullet as 
positive during and immediately after 
the collision.

Ek(bottom) = Eg(top)

To find the velocity of the combined masses
of the bullet and pendulum bob just after
the collision, use the relationship that
describes the conservation of mechanical
energy of the pendulum.
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Frame the Problem
■ Sketch the blocks just before,

at the moment of, and after 
the collision, when they came
to a stop.

■ Momentum is conserved 
during the collision.

■ Since the blocks stuck together, the collision was completely inelastic,
so kinetic energy was not conserved. Some kinetic energy was lost to
sound, heat, and deformation of the wood during the collision.

■ Some kinetic energy remained after the collision.

■ The force of friction did work on the moving blocks, converting the
remaining kinetic energy into heat.

■ Due to the law of conservation of energy, you know that the work
done by the force of friction was equal to the kinetic energy of the
blocks at the instant after the collision.

■ Since the motion is in one direction, use a plus sign to symbolize direction.

■ Use the subscripts “sb” for the small block, “lb” for the large block, and
“cb” for connected blocks.

Identify the Goal
The coefficient of friction, µ, between the wooden blocks and the floor

Variables and Constants
Known Implied Unknown
msb = 0.500 kg

mlb = 3.50 kg

⇀vsb = 3.15 m
s

∆⇀d = 2.63 cm

g = 9.81 m
s2

⇀vlb = 0.00 m
s

µ
⇀F f

W
Ek

⇀FN
⇀v ′cb

Strategy Calculations
msb

⇀vsb + mlb
⇀vlb = msb

⇀v ′sb + mlb
⇀v ′lb

msb
⇀vsb + 0 = (msb + mlb)⇀v ′cb

⇀v ′cb = msb
⇀vsb

msb + mlb

⇀v ′cb =
(0.500 kg)(3.15 m

s )
0.500 kg + 3.50 kg

⇀v ′cb =
1.575 kgm

s
4.00 kg

⇀v ′cb = 0.393 75 m
s

[to the right]

Apply the law of conservation of momen-
tum to find the velocity of the connected
blocks of wood after the collision.

3.15 m
s

⇀vsb = ⇀d∆    = 2.63 cm

msb

mlb

3.50 kg
0.500 kg

Momentum 
is conserved.

Collision is
completely inelastic.

Friction

msb
mlb msb

mlb
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Strategy Calculations

The coefficient of friction between the blocks and the floor is 0.300.

Validate
All of the units cancel, which is correct because the coefficient 
of friction is unitless. The value of 0.300 is quite reasonable for a 
coefficient of friction between wood and another similar surface.

41. A 12.5 g bullet is shot into a ballistic 
pendulum that has a mass of 2.37 kg. The
pendulum rises a distance of 9.55 cm above
its resting position. What was the speed of
the bullet?

42. A student flings a 23 g ball of putty at a 225 g
cart sitting on a slanted air track that is 1.5 m
long. The track is slanted at an angle of 25˚
with the horizontal. If the putty is travelling
at 4.2 m/s parallel to the track when it hits
the cart, will the cart reach the end of the
track before it stops and slides back down?
Support your answer with calculations.

PRACTICE PROBLEMS

µmg∆d = 1
2 mv2

µ =
1
2mv2

mg∆d

µ = v2

2g∆d

µ =
(0.393 75 m

s )2

2(9.81 m
s2 )(2.63 cm)( 1 m

100 cm)

µ =
0.15 504 m2

s2

0.5160 m2

s2

µ = 0.300 46

µ ≅ 0.300

Since the blocks are moving horizontally,
the normal force is the weight of the
blocks. Substitute the weight into the
expression and solve for the coefficient 
of friction.

Ff∆d = 1
2 mv2

µFN∆d = 1
2 mv2

Friction is the force doing the work, and 
it is always parallel to the direction of
motion. Substitute the formula for the
force of friction.

F||∆d = 1
2 mv2

Substitute the expressions for work and
kinetic energy into the equations.

W (to stop blocks) = Ek (after collision)

Due to the law of conservation of energy,
the work done on the blocks by the force
of friction is equal to the kinetic energy of
the connected blocks after the collision.
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43. A car with a mass of 1875 kg is travelling
along a country road when the driver sees a
deer dart out onto the road. The driver slams
on the brakes and manages to stop before 
hitting the deer. The driver of a second car
(mass of 2135 kg) is driving too close and
does not see the deer. When the driver real-
izes that the car ahead is stopping, he hits
the brakes but is unable to stop. The cars
lock together and skid another 4.58 m. All 
of the motion is along a straight line. If 
the coefficient of friction between the dry
concrete and rubber tires is 0.750, what was
the speed of the second car when it hit the
stopped car?

44. You and some classmates read that the
record for the speed of a pitched baseball is
46.0 m/s. You wanted to know how fast your
school’s star baseball pitcher could throw.
Not having a radar gun, you used the con-
cepts you learned in physics class. You made
a pendulum with a rope and a small box
lined with a thick layer of soft clay, so that
the baseball would stick to the inside of the
box. You drew a large protractor on a piece
of paper and placed it at the top, so that one
student could read the maximum angle of the
rope when the pendulum swung up. The
rope was 0.955 m long, the box with clay had
a mass of 5.64 kg, and the baseball had a
mass of 0.350 kg. Your star pitcher pitched a
fastball into the box and the student reading
the angle recorded a value of 20.0˚ from the
resting, vertical position. How fast did your
star pitcher pitch the ball? 

45. A 55.6 kg boulder sat on the side of a moun-
tain beside a lake. The boulder was 14.6 m
above the surface of the lake. One winter
night, the boulder rolled down the mountain,
directly into a 204 kg ice-fishing shack that
was sitting on the frozen lake. What was the
velocity of the boulder and shack at the
instant that they began to slide across the
ice? If the coefficient of friction between the
shack and the rough ice was 0.392, how far
did the shack and boulder slide?

frozen lake

boulder

20˚
30˚
50˚

baseball

wooden box
lined with
clay
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1. The vectors in the following diagrams 
represent the momentum of objects before
and after a collision. Which of the diagrams
(there might be more than one) does not
represent real collisions? Explain your 
reasoning.

2. Some collision problems have two
unknown variables, such as the velocities
of two cars before a collision. Explain how
it is possible to find two unknowns by
using only the law of conservation of
momentum.

3. Two cars of identical mass are
approaching the same intersection, one
from the south and one from the west.

They reach the intersection at the same
time and collide. The cars lock together
and move away at an angle of 22˚ counter-
clockwise from the road, heading east.
Which car was travelling faster than the
other before the collision? Explain your
reasoning.

4. What is the difference between an
elastic collision and an inelastic collision?

5. Describe an example of an elastic 
collision and an example of an inelastic
collision that were not discussed in the text.

6. Given a set of data for a collision,
describe a step-by-step procedure that 
you could use to determine whether the
collision was elastic.

7. The results of the head-on collision in
which the moving mass was much larger
than the stationary mass (m1 >>> m2)
showed that (a) that the velocity of mass 1
after the collision was almost the same as it
had been before the collision and (b) that
mass 2, which was stationary before the
collision, attained a velocity nearly double
that of mass 1 after the collision. Explain

how it is possible for kinetic energy 
(

1
2 mv2

)
to be conserved in such a collision, when
there was a negligible change in the velocity
of mass 1 and a large increase in the velocity
of mass 2.

8. Imagine that you have a very powerful
water pistol. Describe in detail an experi-
ment that you could perform, including the
measurements that you would make, to
determine the velocity of the water as it
leaves the pistol.
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