
Rounding a sharp curve, dropping down a steep slope before
levelling off makes down-hill skiing exhilarating.

Skiing would not be much fun if all ski runs were straight. You
develop skills when you have to judge how fast you can take a
curve or come to a quick stop. In fact, nearly every sport involves
sudden turns, stops, and starts. Motion is rarely in a straight line.
Nevertheless, nearly all of the problem solving skills that you
developed in Chapter 3 involved straight line motion. How can
you describe and analyze forces and motion that follows curved
lines or motion that changes direction abruptly? 

Equations of Motion
When you developed and applied the equations of motion listed
below, you read that you would be using them almost entirely in
one dimension at a time so vector notations were not included in
the equations. Before developing new skills that allow you to work
in two or three dimensions, review the kinematic equations them-
selves. Be sure that you know the conditions under which each 
of the equations applies. Some equations apply only to uniform
motion (motion with a constant velocity) and others apply only to
uniformly accelerated motion (motion with a constant acceleration).

Figure 10.1

454 MHR • Unit 5  Force, Motion, Work, and Energy

Using Vector Components
to Analyze Motion10.1

• Use vector analysis in two
dimensions for systems 
involving relative motion.

• Add and subtract vectors using
the method of components.

• Use free body diagrams to 
analyze force problems.

• resolve (vectors)

• components
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Vector Components
In Chapter 3, when you solved vector addition and subtraction
problems graphically, you probably noticed that the method is very
imprecise. Measurements with rulers and protractors create a large
uncertainty. So you will not be surprised to learn that there is a
more precise method.

An important clue to the more precise method lies in investiga-
tions and problems in which you added vectors that were at an
angle of 90°, or a right angle, relative to each other. For example,
when you determine the vector sum of a canoe’s velocity and the
river’s velocity (Figure 10.2) you can use the Pythagorean theorem
to calculate the sum precisely. You do not have to measure with a
ruler. The precise method for adding and subtracting vectors is
based on right triangles and the rules of trigonometry.

y

x

canoe

river

a = ∆v
∆t

or

a = v2 − v1
∆t

v2 = v1 + a∆t

∆d = (v1 + v2)
2

∆t

∆d = v1∆t + 1
2 a∆t2

v2
2 = v2

1 + 2a∆d

Uniformly accelerated motion
■ definition of acceleration

■ final velocity in terms of initial velocity,
acceleration, and time interval

■ displacement in terms of initial velocity,
final velocity, and time interval

■ displacement in terms of initial velocity,
acceleration, and time interval

■ final velocity in terms of initial velocity,
acceleration, and 
displacement

v = ∆d
∆t

∆d = v∆t

Uniform motion
■ definition of velocity

■ displacement in terms of velocity 
and time
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To use the vector form of some of
the equations of motion would
require mathematical techniques
and notations that are beyond the
scope of this textbook. Therefore,
it is best to apply the equations to
one dimension at a time and not
to attempt to use vector notations.

PHYSICS FILE

Use the
Pythagorean theorem to 
calculate vectors precisely.

Figure 10.2



The vectors that you want to add or subtract are rarely at right
angles to each other; however, any vector can be separated, or
resolved, into components that are at right angles to each other.
Components are parts of a vector that lie on the axes of a coordinate
system. Since components are confined to one dimension, they
can be added algebraically. 

When working with vector components, the x–y-coordinate 
system is much more convenient to use than a system based on
compass directions. Follow the steps in Table 10.1 to learn how 
to resolve a vector into components. If you need to review the 
definitions of the trigonometric functions, sine, cosine, and 
tangent, turn to Skill Set 5.

Table 10.1 Resolving Vectors into x- and y-Components

Procedural Step

Draw the vector with its tail at 
the origin of the coordinate 
system.

Identify the angle that the 
vector makes with the x-axis 
and label it “  .”

Draw a vertical line from the 
tip of the vector to the x-axis. 
The line from the origin to the 
base of this vertical line is the 
x-component of the vector.

Solve for the x-component,     .

Graph

θ

Write the equation that defines
cos   .θ

cos θ = Ax

|⇀A|

Ax = |⇀A| cosθAx

0

y

x

0

y

x

0

y

x

θ

θ

x-component

θ A

⇀
A

⇀
A

⇀
A

x
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To learn more about vector compo-
nents, go to your Electronic
Learning Partner.

ELECTRONIC
LEARNING PARTNER

When working in an x–y-coordi-
nate system, mathematicians and
physicists report the direction of
a vector by giving the angle that
the vector makes with the 
positive x-axis. You find the angle
by starting at the positive x-axis
and rotating counterclockwise
until you reach the location of the
vector. If a vector has an angle
greater than 90°, it lies in a quad-
rant other than the first. Vectors
in the second, third, or fourth
quadrants have at least one 
component that is negative. 
Figure 10.3 summarizes the signs
of the x- and y-components in the
four quadrants. When you use an
angle to calculate the magnitude
of the components, you would
use the angle the vector makes
with the nearest x-axis. The model
problems show you how to find
the components of a vector.

PHYSICS FILE



Procedural Step

Draw a horizontal line from 
the tip of the vector to the 
y-axis. The line from the origin 
to the base of this line is the 
y-component.

Write the equation that defines
sin   .

Solve for the y-component,    

Graph

θ
sin θ = Ay

|⇀A|

Ay = |⇀A| sin θAy

0

y

xθ

θ

y-
co

m
p

on
en

t 
A

y

⇀
A
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The signs of vector
components are summarized on
this coordinate system.

Figure 10.3

y

−y

x−x

Quadrant 1
+x, +y

Quadrant 2
−x, +y

−x, −y
Quadrant 3

+x, −y
Quadrant 4

Resolving Vectors
Find the x- and y-components of vector ∆⇀d , which has 
a magnitude of 64 m at an angle of 120˚.

Frame the Problem
■ The angle is between 90˚ and 180˚, so it is in the second quadrant.

Therefore, the x-component is negative and the y-component is
positive.

■ Use trigonometric functions to find the components of the vector.

Identify the Goal
The components, ∆dx and ∆dy, of vector ∆⇀d

Variables and Constants
Known Unknown
∆⇀d = 64 m ∆dx

θ = 120˚ ∆dy

MODEL PROBLEM 

To avoid confusion, always choose
to use the angle that the vector
makes with the x-axis. Regardless
of the quadrant in which the vector
is located, the x-component will
always be the cosine of the angle
times the magnitude of the vector.
The y-component will always be
the sine of the angle times the
magnitude of the vector. Mathe-
maticians call the angle that the
vector makes with the closest 
x-axis the “reference angle.”

PROBLEM TIP

continued



Strategy Calculations

The x-component of the vector is −32 m and the y-component is +55 m.

Validate
Use the Pythagorean theorem to check your answers.

|∆⇀d|2 = ∆dx 2 + ∆dy 2

|∆⇀d|2 = (32 m)2 + (55.4 m)2

|∆⇀d|2 = 1024 m2 + 3069.2 m2

|∆⇀d|2 = 4093.2 m2

|∆⇀d| = 64 m

The value agrees with the original vector.

The x-component lies on the negative x-axis
so it is negative. The y-component lies on
the positive y-axis so it is positive.

Determine signs of the components.

∆dx = |∆⇀d| cos θ
∆dx = 64 m cos 60˚

∆dx = 64 m (0.5000)

∆dx = 32 m

∆dy = |∆⇀d| sin θ
∆dy = 64 m sin 60˚

∆dy = 64 m (0.8660)

∆dy = 55.4 m

Calculate the components according to the
directions in Table 10.1.

0

y

x60˚

∆⇀d = 64m

∆dy

∆dx

Draw lines from the tip of the vector to each
axis, so that they are parallel to the axes.

θR = 180˚ − 120˚
θR = 60˚

0

y

x

θ = 120˚

∆⇀d = 64m

θR

Identify the angle with the closest x-axis. 
Label it “θR” or “reference angle.”

0

y

x
θ = 120˚

∆⇀d = 64m

Draw the vector with its tail at the origin of 
an x–y-coordinate system.
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1. Resolve the following vectors into their 
components.

(a) a position of 16 m at an angle of 75˚

(b) an acceleration of 8.1 m/s2 at an angle 
of 145˚

(c) a velocity of 16.0 m/s at an angle of 225˚

2. Resolve the following vectors into their 
components.

(a) a displacement of 20.0 km[N20.0˚E]

(b) a velocity of 3.0 m/s[E30.0˚S]

(c) a velocity of 6.8 m/s[W70.0˚N]

3. A hot-air balloon has drifted 60.0 km
[E60.0˚N] from its launch point. It lands in a
field beside a road that runs in a north-south
direction. The balloonists radio back to their
ground crew to come and pick them up. The
ground crew can travel only on roads that
run north-south or east-west. The roads are
laid out in a grid pattern, with intersections
every 2.0 km. How far east and then how far
north will the pickup van need to travel in
order to reach the balloon?

PRACTICE PROBLEMS
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Vector Addition and Subtraction
by Using Components
Examine Figure 10.4 to begin to see how resolving vectors into their
components will allow you to add or subtract vectors in a precise
yet uncomplicated way. In the figure, 

⇀R is the resultant vector for
the addition of 

⇀A , 
⇀B , and 

⇀C . You can also see that Rx is equal in
length to Ax + Bx + Cx . The same is true for the y-components.

When you want to add or subtract vectors, you can separate 
the vectors into their components, add or subtract the compo-
nents, and then find the resultant vector by using the Pythagorean
theorem. 

Rx = Ax + Bx + Cx + · · · Ry = Ay + By + Cy + · · · |⇀R|2 = Rx
2 + Ry

2

You can find the angle, θ, from the components of the resultant
vector, because they make the sides of a right triangle. Find the
ratio of Ry to Rx, then use your calculator to find the angle for
which the tangent is the ratio.

tan θ = Ry

Rx

0

y

x
Rx

Ry
⇀
R

θ

0

y

x
Ax Bx Cx

Ay

By

Cy

⇀
A

⇀
B

⇀
C

The projections of
each vector on the x- and y-axes
are the components of the 
vector. 

Figure 10.4



Using Vector Components
You are the pilot of a small plane and want to reach an 
airport, 5.0 × 102 km due south, in 4.0 h. A wind is blowing 
at 5.0 × 101 km/h[S35˚E]. With what heading and airspeed 
should you fly to reach the airport on time? 

Frame the Problem
■ Make a sketch of the problem.

■ Your destination is directly south.

■ A strong wind is blowing east of south. The heading of the plane
will have to account for the wind.

■ The vector sum of the velocity of the plane in relation to the air and
the velocity of the air in relation to the ground, must be the same 
as the needed total velocity of the plane in relation to the ground.

■ You must use vector addition.

Identify the Goal
The velocity, ⇀vpa, of the plane relative to the air
(Note: A velocity has not been reported until both the magnitude
and direction are given.)

Variables and Constants
Known Unknown
⇀vag = 5.0 × 101 km

h
[S35˚E] ⇀vpa vpa x vpa y

∆⇀dpg = 5.0 × 102 km[S] θag vag x vag y

∆t = 4.0 h ⇀vpg vpg x vpg y

θpg

Strategy Calculations

⇀v = ∆⇀d
∆t

⇀vpg = ∆⇀dpg

∆tpg

⇀vpg = 5.0 × 102 km[S]
4.0 h

⇀vpg = 125 km
h

[S]

You can find the ground speed and
direction that the plane must attain 
to arrive on time by using the mathe-
matical definition for velocity.

MODEL PROBLEM 
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⇀−vag

0

y (N)
x (E)

⇀vpg

⇀vag

⇀vpa
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−⇀vag is in the second 
quadrant, so the 
x-component is negative and
the y-component is positive.

⇀vpg has no x-component 
and the y-component is 
negative.

Determine the signs of the 
components.

−vag x = |⇀vag| cos θag

−vag x = 50 km
h

cos 55˚

−vag x = 50 km
h

(0.5736)

−vag x = 28.68 km
h

−vag y = |⇀vag| sin θag

−vag y = 50 km
h

sin 55˚

−vag y = 50 km
h

(0.8191)

−vag y = 40.96 km
h

⇀vpg is pointed directly
south, or along the negative
y-axis. Therefore, it has no
x-component. Its y-compo-
nent is the same as the 
vector.
vpg y = |⇀vpg|
vpg y = −125 km

h

Find the x- and y-components of the
vectors ⇀vpg and −⇀vag.

θag = 90˚ − 35˚ = 55˚Define and draw the vector −⇀vag.

θ

35˚

y (N)

x (E)

⇀−vag = 50 km/h[N 35˚W]

−vagx

−vagy

0

y (N)
x (E)

⇀vpg

Draw the two known vectors on an 
x–y-coordinate system (+y coincides
with north), with their tails at the 
origin.

Identify the angles they make with
the x-axis.

⇀vpg =⇀vpa +⇀vag

⇀vpg −⇀vag =⇀vpa +⇀vag −⇀vag

⇀vpg −⇀vag =⇀vpa

⇀vpa =⇀vpg −⇀vag

Since you now know the wind veloc-
ity and the necessary velocity of the
plane in relation to the ground, you
can use the expression for the vector
sum of the velocities to find the
velocity of the plane in relation to 
the air. This quantity is the heading
and airspeed of the plane. First, 
solve for ⇀vpa.

continued

Recall from Chapter 3 that the 
negative of a vector has the 
same magnitude but is opposite 
in direction to the original vector

PROBLEM TIP
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Strategy Calculations

The plane’s airspeed must be 89 km/h and it must fly at a heading 
of [W71˚S].

Validate
The wind is blowing toward the southeast and the pilot wants to fly
directly south. The component of the wind blowing south will help
the plane to get there faster, but the component of the wind blowing
east will blow the plane off course if the pilot does not compensate.
The pilot must head slightly west to make up for the wind blowing
east, so you would expect that the pilot would have to fly slightly
west of south. (Note that [W71˚S] is the same as [S19˚W].) This is 
in perfect agreement with the calculations.

tan θpa =
84.04 km

h
28.68 km

h

= 2.93

θpa = tan−1 2.93

θpa = 71.1˚

Find the angle the resultant makes
with the x-axis.

Since the components are both 
negative, the vector lies in the third
quadrant. However, use positive 
values to find the reference angle.
The result will give the angle from
the negative x-axis into the fourth
quadrant.

|⇀vpa|2 = (vpa x)2 + (vpa y)2

|⇀vpa|2 =
(
−28.68 km

h

)2
+

(
−84.04 km

h

)2

|⇀vpa|2 = 822.54
( km

h

)2
+ 7062.7

( km
h

)2

|⇀vpa|2 = 7885.3
( km

h

)2

|⇀vpa| = 88.8 km
h

Use the Pythagorean theorem to find
the magnitude of ⇀vpa.

Vector x-component y-component

⇀vpg 0.0 km
h

−125 km
h

−⇀vag −28.68 km
h

40.96 km
h

⇀vpa −28.68 km
h

−84.04 km
h

Add the components of ⇀vpg and −⇀vag

to obtain the components of ⇀vpa.

Make a table in which to list the 
x- and y-components of the vectors.

continued from previous page



4. A pleasure boat heads out of a marina for
sightseeing. It travels 2.7 km due south  to a
small island. Then it travels 3.4 km[S26˚E] to
another island. Finally, it turns and heads
[E12˚N] for 1.9 km to a third island. 

(a) Determine the boat’s displacement for the
entire journey.

(b) In what direction should the boat be
pointed to head straight home? 

5. A jet-ski driver wants to head to an island 
in the St. Lawrence River that is 5.0 km
[W20.0˚S] away. If he is travelling at a speed
of 40.0 km/h relative to the water and the 
St. Lawrence is flowing 6.0 km/h[E]

(a) in what direction should he head the 
jet-ski?

(b) how long will it take him to reach the
island?

6. A space shuttle is approaching the Inter-
national Space Station at a velocity of 12 m/s
relative to the space station. A landing cable is
fired toward the space station with a velocity
of 3.0 m/s, at an angle of 25˚ relative to the
direction of the shuttle. What velocity will
the cable appear to have to an observer looking
out of a window in the space station? 

PRACTICE PROBLEMS
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Vector Components and Dynamics
One of the most useful applications of vector addition and subtrac-
tion using components is in dynamics. You will recall from
Chapter 5 that Newton’s first and second laws are:

■ An object at rest or in uniform motion will remain at rest or in
uniform motion unless acted upon by an external force.

■ When a force 
⇀F, acts on a mass m, the resulting acceleration 

⇀a, is proportional to the force and inversely proportional to 
the mass. 

⇀a =
⇀F
m

or          
⇀F = m⇀a

The force, 
⇀F, in both laws always represents the net force or the

vector sum of all of the forces acting on the mass. In some cases,
you do not know the direction of the net force. You must first do
vector addition to find it. In other cases, you want an object to be
in equilibrium, that is, to be stationary. A point mass is in equilib-
rium if the vector sum of all of the forces acting on it is zero. You
might know two or more forces and want to find the equilibrating
force — the force that will cause to vector sum to be zero. For
example, if 

⇀F1 = 425 N[E63˚N] and 
⇀F2 = 385 N[W15˚N], what force

would create equilibrium? Figure 10.5 shows you how to approach
such a problem. The two forces are shown in part A, 

⇀F1 is resolved
into components in part B, and 

⇀F2 is resolved into components in
part C.



Three children are each pulling on their older sibling, who has a
mass of 65 kg. The forces exerted by each child are listed below. 
Use vector components to find the acceleration of the older sibling.

⇀F1 = 45 N[E] ⇀F2 = 65 N[S40˚W] ⇀F3 = 20 N[N75˚W]

Frame the Problem
■ The force of gravity on the older sibling is balanced by the 

normal force of the ground. Therefore, you can neglect vertical
forces because there is no motion in the vertical plane.

■ Draw a free body diagram representing horizontal forces on 
the older sibling.

MODEL PROBLEM 

Find the x- and y-components of the known forces then find
an x and a y component that will make all of the components add to zero.

Make a table such as Table 10.2 to record the components of the
known forces. Include a row for the equilibrating force, 

⇀F3. Set the
sum of the x-components to zero and the sum of the y-components
to zero and solve for the components of the third force. Use the
components to find the magnitude and direction of the equilibrating
force, 

⇀F3.

Table 10.2

Vector x-component y-component

192.94 N

−371.88 N

0.0  N

378.67  N

99.645 N

0.0  N

⇀
F1

⇀
F2

⇀
F3

⇀
F3x

⇀
F3y

⇀
Fnet

Figure 10.5

y (N)

x (E)

F2

F1

?

?

15.0˚
63.0˚

y (N)

x (E)

F1y

F1x

F1

63.0˚

y (N)

x (E)

F2

F2y

F2x

15.0˚

B CA
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N

45 N

65 N

50˚
15˚

20 N

E
+

+
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continued

■ The net force in the horizontal plane will determine the 
magnitude and direction of the acceleration of the 
older sibling, 

■ Newton’s second law applies to this problem.

Identify the Goal
The acceleration, ⇀a, of the older sibling

Variables and Constants
Known Unknown
⇀F1 = 45 N[E] ⇀a
⇀F2 = 65 N[S40˚W] θ
⇀F3 = 20 N[N75˚W]

Strategy and Calculations
Draw each vector with its tail at the origin of an x–y-coordinate system where +y coincides with
north and +x coincides with east. 

Find the angle with the nearest x-axis.

Find the x-component of each force vectors.

Find the y-components of each force vector.

F3y = |⇀F3| sin 15˚

F3y = (20 N)(0.2588)

F3y = 5.176 N

F2y = −|⇀F2| sin 50˚

F2y = −(65 N)(0.7660)

F2y = −49.79 N
The angle is in the third 
quadrant so y is negative.

F1y = |⇀F1| sin 0˚

F1y = (45 N)(0.0)

F1y = 0.0 N

F3x = −|⇀F3| cos 15˚

F3x = −(20 N)(0.9659)

F3x = −19.32 N
The angle is in the second
quadrant so x is negative.

F2x = −|⇀F2| cos 50˚

F2x = −(65 N)(0.6428)

F2x = −41.78 N
The angle is in the third 
quadrant so x is negative.

F1x = |⇀F1| cos 0˚

F1x = (45 N)(1.000)

F1x = 45 N

In the angle [N75˚W] the 75˚
angle is with the +y-axis. The
angle with the –x-axis is
90˚ − 75˚ = 15˚

In the angle [S40˚W], the 40˚
angle is with the –y-axis. The
angle with the –x-axis is
90˚ − 40˚ = 50˚

East coincides with the x-axis
so the angle is 0˚

20 N

15˚

+

−

65 N

50˚
−

−

45 N

+

+



The net force on the older sibling is 46 N at an angle of 70˚ 
from the x-axis in the third quadrant. This result is equivalent 
to 47 N[W70˚S] or 47 N[S20˚W].

The acceleration of the older sibling is 0.73 m
s2 [S20˚W].

Validate
Using components gives nearly the same answer as the scale 
diagram method. You would expect the method of components 
to yield more accurate results. Also, the units cancelled to give 
m/s2 which is correct for acceleration.

⇀a =
⇀F
m

⇀a = 47.43 N[S20˚W]
65 kg

⇀a = 0.72969
kg·m

s2

kg
[S20˚W]

⇀a = 0.79269 m
s2 [S20˚W]

Apply Newton’s second law in terms of accelera-
tion to find the older sibling’s acceleration.

tan θ = −44.614 N
−16.1 N

tan θ = 2.7711

θ = tan−1 2.7711

θ = 70.16˚

Use trigonometry to find the angle θ.

Since both the x- and y-components are negative,
the angle is in the third quadrant.

|⇀Fnet|2 = (Fx net)2 + (Fy net)2

|⇀Fnet|2 = (−16.1 N)2 + (−44.614 N)2

|⇀Fnet|2 = 259.21 N2 + 1990.41 N2

|⇀Fnet|2 = 2249.62 N2

|⇀Fnet| = 47.430 N

Use the Pythagorean Theorem to find the 
magnitude of the net force.

Vector x-component y-component

45  N

−41.78 N

−19.32 N

−16.1  N

0.0  N

−49.79  N

5.176 N

−44.614 N

⇀
F1

⇀
F2

⇀
F3

⇀
Fnet

Make a table in which to list the x- and y-compo-
nents. Add them to find the components of the
resultant vector.
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Working with Common Forces
A few common forces influence nearly all forms of motion that
occur on or near Earth’s surface. These common forces are the
gravitational force, frictional forces, a normal force, and in many
cases an applied force. Although you are familiar with these forces
from your previous study of Chapters 4 and 5, some features of
these forces warrant a more detailed examination.

A gravitational force acting on a mass is the weight of that mass
thus weight is a force. Since Newton’s second law applies to any
net force and if the force of gravity is the only force acting on 
an object, you can find an object’s weight by applying Newton’s 
second law.

The critical point to remember when using the equation for weight
is that the value of g varies slightly from place to place on Earth’s
surface because Earth is not a perfect sphere. So, although you
will typically use the value 9.81 m/s2, be aware that it can vary
depending on location.

■ Since the direction is always the same, you will often see the
equation written without vector notations. Therefore, an object’s
weight is often written as shown.

■ If gravity is the only force acting on a mass, near Earth’s surface,
the acceleration of the mass will have a magnitude equal to g.
The direction of the gravitational force near Earth’s surface is
toward Earth’s centre.

■ State Newton’s second law

Chapter 10  Applications of Forces • MHR 467

7. For each of the following combinations of
forces, find the equilibrating force — the force
that will make the vector sum equal to zero.

(a)
⇀F1 = 154 N[E22˚S],

⇀F2 = 203 N[W74˚N]
What is 

⇀F3?

(b)
⇀F1 = 782 N[E12˚N],

⇀F2 = 629 N[W24˚S]
What is 

⇀F3?

(c)
⇀F1 = 48 N[W81˚N],

⇀F2 = 61 N[E63˚N],
⇀F3 = 78 N[E15˚S] What is 

⇀F4?

8. Three young children are pulling on a stuffed
animal toy. Amy is pulling with a force of 
15 N[N58˚E] and Buffy is pulling with a force
of 18 N[S23˚E]. With what force must Caitlin
pull to prevent the toy from moving?

9. A traffic light hangs in the centre of the road
from cables as shown in the figure. If the mass
of the traffic light is 65 kg, what force must
the cables exert on the light to prevent it from
falling? (Hint: Since the angles that the cables
make with the horizontal are the same (12˚)
they both exert forces of the same magnitude.)

PRACTICE PROBLEMS

12˚ 12˚

Fg = mg

⇀Fg = mg[down]

⇀F = m⇀a
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When the vector sum of all of the forces acting
on a point mass is zero, the mass is said to be 
in equilibrium. You have just been performing
calculations to create an equilibrium. How close
do your calculations agree with experimental
observation? You will answer that question in
this activity.

Set up a force table similar to the one shown
in the photograph. Adjust three of the pulleys 
so that their strings pass over the 30˚, 105˚, and
185˚ marks. Place masses totalling 150 g (at 30˚),
200 g (at 105˚), and 175 g (at 185˚) on the hold-
ers hanging from the strings over the pulleys.
Calculate the force which will bring the forces
on the strings to equilibrium holding the central
ring over the central point on the force table.
Test your calculation by placing masses on the
string over the fourth pulley and adjusting the
pulley to the calculated angle.

Choose another combination of masses and
experiment with the force table until you have
established another equilibrium condition.
Observe the angles and determine the forces on
the strings. Calculate the net force pulling on
the central ring on the force table to find out
how well your calculation agrees with your
observation. Calculate the percent difference
between the two values.

Assemble a holder which consists of a rod or
dowel supported horizontally by clamps on two
retort stands as shown in the diagram. Attach
strings of different lengths near the ends of the
rod or dowel. Attach Newton spring scales to
the end of each string. Hang an object of
unknown mass on the scales. From the readings
on the scales, calculate the mass of the object.
With a single Newton spring scale, determine
the mass of the object. 

Analyze and Conclude
1. Discuss the degree to which your calcula-

tions agree with your observations with the
force table.

2. Describe any possible sources of error in
your observations.

3. What is the percent difference between your
calculated value for the object of unknown
mass and your observed value?

4. Comment on the significance of such calcula-
tions in the design of structures such as
buildings or bridges.



Although objects on Earth’s surface are always subject to gravity,
many objects are not moving at all. To make the net force equal to
zero, something must be exerting a force that is equal in magnitude
and opposite in direction to the force of gravity. Recall that Newton’s
third law states,

For every action force on object B due to object A, there is a
reaction force, equal in magnitude but opposite in direction,
due to object B acting back on object A.

In the case of stationary objects, the force that is “equal and oppo-
site” to the gravitational force is the normal force exerted by the
ground or other surface on which the object is resting. In cases
such as this — an object resting on the ground — the normal force
is equal, in magnitude, to the weight of the object.

Normal forces are perpendicular to the plane of the surface
that is exerting the normal force.

When objects are falling due to the gravitational force, they
rarely fall with the acceleration due to gravity or 9.81 m/s2. The
acceleration of falling objects is smaller than g because the force 
of air friction is acting in the direction opposite to their motion,
thus reducing the downward acceleration. Virtually every moving
object that you encounter is subject to some form of friction.
However, use caution when solving problems involving friction.
Falling objects experience air friction which is a type of fluid 
friction. Fluid friction is very complex and increases as the speed
of the object increases. You will not do any detailed analyzes of
fluid friction. 

The familiar equation for the force of friction that you have
used in the past applies only to sliding friction. When two surfaces
are sliding past each other, the magnitude of the force of friction
which each is exerting on the other is proportional to the magni-
tude of the normal force. Note that the equation is written without
vector notations because it is only the magnitudes of the forces
that are related.

Ff = µFN

Figure 10.6

normal force of floor 
on table and teacher

normal force of
blackboard
on chalk

normal force of 
book stand on book
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The Normal Force is Not Always
the Weight
Students often equate a normal
force of a surface on an object to
the weight of the object. Although
this is occasionally true, it is not
always the case. The normal
force is the force pressing two
surfaces together and is always
perpendicular to the plane of the
surfaces. In some situations, the
normal force is unrelated to the
weight of an object.

MISCONCEPTION



The proportionality constant, µ, is the coefficient of friction and
must be experimentally determined for any two surfaces that slide
on each other. Also, you probably recall from Chapter 4, for every
combination of surfaces, there are two frictional coefficients. The
coefficient of kinetic friction, µ k, applies when one object is moving
relative to the other while the coefficient of static friction, µs, applies
to an object at rest that is just starting to move.

Both the frictional force and the normal force have features that
are critical to remember when analyzing problems. One example
will illustrate both of these features. Consider the crate on the
inclined plane shown in Figure 10.7. Given that the mass of the
crate is 38 kg, the coefficient of friction is 0.48, and the angle of
the incline is 25˚, what is the acceleration of the crate?

What do you notice that immediately tells you that there is
something wrong with this answer? The normal force was 
calculated correctly. The fact that it is not equal to the weight 
of the crate was taken into account. It appears that all of the values
were substituted into the expression for Newton’s second law in
the y direction correctly. However, the sign of the acceleration is
negative. This sign implies that the crate will spontaneously 
accelerate up the inclined plane in the absence of an applied force.
Obviously this will not happen. Further inspection of the calculation
of the acceleration reveals that the frictional force was greater than
the component of the gravitational force along the incline. This
calculation of the frictional force is the source of the problem. 
The magnitude of the frictional force is not always µFN.
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Fx = max

Fgx + Ff = max

mg sin θ − µFN = max

(38 kg)
(
9.81 m

s2

)
(sin 25˚) − (0.48)(337.85 N) = (38 kg)ax

ax = 157.54 N − 162.17 N
38 kg

ax = −0.12184 m
s2

ax ≅ − 0.12 m
s2

■ To find the acceleration of
the crate, apply Newton’s
second law to the compo-
nents of the forces in the 
x direction. From this equa-
tion, you can solve for the
acceleration of the crate.

Fy = may

Fgy + FN = may

−(38 kg)
(
9.81 m

s2

)
(cos 25˚) + FN = (38 kg)

(
0.0 m

s2

)
FN = 337.85 N

■ To find the force of friction,
you need to know the normal
force. Remember, the normal
force is not the weight of the
crate. To find the normal
force, apply Newton’s second
law to the y-components of
all of the forces. Since there
is no motion in the y direc-
tion, the acceleration is zero.

Assign a coordinate
system to the diagram with the 
x axis parallel to the inclined plane.
Let the positive x direction be
down the plane.

Figure 10.7

+y

−y
+x

−x

25˚

⇀
F f

⇀
FN

⇀
Fg



A worker places a large plastic waste container with a mass 
of 84 kg on the ramp of a loading dock as shown in the figure.
The ramp makes an angle of 22˚ with the horizontal. The
workers turns to pick up another container before pushing 
the first one up the ramp. 

(a) If the coefficient of static friction is 0.47, will the crate slide
down the ramp?

(b) If the crate does slide down, what will be its acceleration?

(c) If the crate does not slide down, and the worker starts to
push it up the ramp with an applied force parallel to the
plane, with what force will he be pushing when the crate
begins to move?

(d) If the worker continues to push with the same force after the
crate starts moving, and the coefficient of kinetic friction 
is 0.25, at what rate will the container start to accelerate?

MODEL PROBLEM 
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continued

To understand why this is true, consider the crate in Figure 10.8 A.
It is not moving so the horizontal acceleration must be zero indi-
cating that the net horizontal force is zero. Since there is no applied
force acting horizontally, the frictional force must be zero. In 
part B, someone is exerting an applied force but the crate is still
stationary indicating that the acceleration and the net force on the
crate must be zero. In this case, the frictional force must be equal
in magnitude to the applied force regardless of its magnitude.
Until the applied force is great enough to overcome the maximum
possible static frictional force, the crate will not begin to move.
This is the critical point to remember — the frictional force
increases with the opposing force until it reaches its maximum
and then the object begins to move. A frictional force can never be
larger than its opposing force. For this reason, the equation for the
force of friction is sometimes written,

Ff(max) = µFN.

BA
(A) When there is

no applied force acting horizontally
on the crate, there is no frictional
force. (B) As someone applies a
horizontal force, the frictional force
increases with the applied force
until the applied force reaches µFN.
When the applied force exceeds
µFN, the crate begins to move.

Figure 10.8

22°

continued
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Frame the Problem
■ Sketch free body diagrams of the container sitting on

the ramp and the container with the applied force of
the worker.

■ If the component of the force of gravity that is parallel
to the ramp is greater than the maximum possible 
frictional force, it will slide down the ramp.
Otherwise, it will remain motionless.

■ To start the container sliding up the ramp, the worker
will have to apply a force that is equal in magnitude to
the maximum possible force of friction. The coefficient
of static friction applies to this situation.

■ As soon as the container starts to slide, the coefficient of 
kinetic friction applies. 

■ The acceleration will depend on the net force and the mass
of the container.

Identify the Goal
(a) whether the container will slide down the ramp

(b) acceleration, ax, of the container down the ramp

(c) applied force, 
⇀Fa, needed to start the container sliding up 

the ramp

(d) acceleration, ax, of the container up the ramp

Variables
Known Implied Unknown
m = 84 kg µs = 0.47 g = 9.81 m

s2 ax (up)

θ = 22˚ µ k = 0.25 ax (down)

Strategy Calculations

Fgx

Fgy

⇀
Fg

+x

+y

θ

sin θ = Fgx∣∣⇀Fg
∣∣

Fgx =
∣∣⇀Fg

∣∣ sin θ
Fgx = mg sin θ

Fgx = (84 kg)
(
9.81 m

s2

)
sin 22˚

Fgx = (824.04 N)(0.374607)

Fgx = 308.69 N

Find the x component of the force 
of gravity.

continued from previous page

⇀
FN

⇀
F f

⇀
Fa

⇀γ
Fg

⇀
F f

⇀
FN

⇀γ
Fg



(a) The magnitude of the maximum possible force of friction is 
larger than the component of the force of gravity along the 
ramp. Therefore, the container will not slide.

(b) The acceleration of the container down the ramp is zero.

(c) The applied force necessary to overcome the component of gravity
along the ramp and to overcome the force of static friction is
6.7 × 102 N up the plane in the negative direction.

Fa + mg sin θ + µsFN = 0

Fa = −mg sin θ − µsFN

Fa = −(84 kg)
(
9.81 m

s2

)
sin 22˚ − (0.47)(764.04 N)

Fa = −(824.04 N)(0.37461) − (359.09 N)

Fa = −308.69 N − 359.09 N

Fa = −667.787 N

Fa ≅ − 6.7 × 102 N

The acceleration in the x direction will be zero
until the applied force has overcome the force 
of static friction.

Fx = max

Fa + Fgx + Ff = max

Fa + mg sin θ + µsFN = max

Find the applied force by applying Newton’s 
second law to the components of force in the 
x direction. The force of friction will be positive
(down the ramp) because the applied force is in
the negative direction (up the ramp).

−mg cos θ + FN = 0

FN = mg cos θ

FN = (84 kg)
(
9.81 m

s2

)
cos 22˚

FN = (824.04 N)(0.92718)

FN = 764.04 N

There is no motion in the y direction so the
acceleration is zero.

Fy = may

Fgy + FN = may

−mg cos θ + FN = may

Find the net force in the y direction by applying
Newton’s second law to the components of force
in the y direction.

Ff (max) = µsFN

Ff (max) = µsmg cos θ

Ff (max) = (0.47)(84 kg)
(
9.81 m

s2

)
cos 22˚

Ff (max) = (387.29 N)(0.92718)

Ff (max) = 359.097 N

Find the maximum possible force of static 
friction.
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continued



Strategy Calculations

(d) At the instant that the container starts to move, its acceleration
up the ramp will be 2.0 m/s2. This is quite fast so the worker will
reduce the applied force immediately.

Validate 
Recalling that the units kg·m/s2 are equivalent to a N, all of the units
cancel to give the correct units. Personal experience tells you that it
is reasonable that the container does not slide down the ramp. The
applied force needed to start pushing the crate up the ramp is smaller
than the weight of the container which is expected.

10. A cardboard box (of negligible mass) filled
with 45 kg of paper sits on a ramp that
makes an angle of 21˚ with the horizontal.
The coefficient of static friction is 0.42.

(a) Will the box slide down the ramp?
Explain.

(b) If not, how much force would you have to
apply directly down the ramp to start the
box sliding?

11. A 61 kg plastic container sits on a ramp. 

(a) If the coefficient of static friction is 0.37,
at what angle of the ramp would the 
container just start to slide?

(b) If the coefficient of kinetic friction is 0.18,
what would be the acceleration of the
container just after it started to slide?

12. A plastic recycling container filled with
paper, making a total of 55 kg, is sitting on 
a ramp that makes an angle of 33˚ with the
horizontal. If the coefficient of kinetic friction
is 0.23, with what applied force directly up
the ramp would you have to push to keep 
the container sliding up the ramp at a 
constant velocity?

PRACTICE PROBLEMS

Fa + mg sin θ + µsFN = max

max = Fa + mg sin θ + µ kFN

ax = Fa + mg sin θ + µ kFN

m

ax =
−667.79 N + (84 kg)

(
9.81 m

s2

)
sin 22˚ + (0.25)(764.04 N)

84 kg

ax = −667.79 N + (824.04 N)(0.37461) + (191.01 N)
84 kg

ax = −667.79 N + 308.69 N + 191.01 N
84 kg

ax = −2.0011 m
s2

ax ≅ − 2.0 m
s2

As soon as the container begins to
move, the coefficient of kinetic 
friction replaces the coefficient of
static friction. Find the acceleration
in the x direction by applying
Newton’s second law to the compo-
nents of force in the x direction and
using the coefficient of kinetic friction.
Use the (unrounded) value for the
applied force calculated above.
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13. A new worker in a warehouse is pushing an
85 kg crate up a 28˚ ramp. The coefficient 
of static friction is 0.46. Instead of pushing
directly up the ramp, the worker is pushing
directly horizontally as shown in the diagram.

(a) How hard does the worker have to push
to start the crate moving up the ramp?
(Hint: A component of the applied force is
perpendicular to the ramp thus increasing
the normal force.)

(b) An experienced worker stops and tells the
new worker to kneel down a little and
push directly up the ramp. How hard does
the worker have to push to start the crate
moving up the ramp from this position? 
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1. Explain how to resolve a vector.

2. What use is the Pythagorean theorem in
resolving vectors?

3. Draw examples of velocity vectors 
for the following cases:

(a) the x- and y-components are both 
positive

(b) the x-component is positive and the 
y-component is negative

(c) the x-component is negative and the 
y-component is positive

(d) the x-component is zero and the 
y-component is negative

4. Consider a standard x–y-coordinate
system. In which quadrant(s) does a vector
have:

(a) two positive components? 

(b) two negative components? 

(c) one positive and one negative 
component?

5. When applying Newton’s first and sec-
ond laws, what is the most important fact
to remember about the force in these laws?

6. Under what conditions is it valid to 
use 9.81 m/s2 in the equation Fg = mg
for weight?

7. Why are there two coefficients of 
friction for every pair of surfaces that slide
across each other?

8. How does fluid friction differ from 
sliding friction?

9. Give two examples of normal forces
that do not involve the weight of an object.

10. What is the significance of writing the
equation for sliding friction with (max) as 
a subscript? Ff (max) = µFN

11. Do some research to learn how balanc-
ing forces is important to bridge building.
How do engineers account for the weight 
of the cars or trains that will be using 
the bridge?

MC

C
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C
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K/U

C
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10.1 Section Review
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