
When you do work on an object, will the object always gain 
kinetic energy? Are there situations where you do work on an
object but leave the object at rest? The work done by the student
in the photograph is a clear demonstration that an object may
remain motionless after work is done on it. In this section, you
will consider how doing work on an object can result in a change
in potential energy, rather than in kinetic energy. Potential energy 
is sometimes described as the energy stored by an object due to 
its position or condition.

When you lift groceries onto a shelf, you have exerted a
force on the groceries. However, when they are on the shelf, they have no
kinetic energy. What form of energy have the groceries gained?

Potential Energy 
Consider the work you do on your physics textbook when you lift
it from the floor and place it on the top shelf of your locker. You
have exerted a force over a distance. Therefore, you have done work
on the textbook and yet it is not speeding off out of sight. The work
you did on your textbook is now stored in the book by virtue of its
position. Your book has gained potential energy. By doing work
against the force of gravity, you have given your book a special
form of potential energy called gravitational potential energy. 

Gravitational potential energy is only one of several forms of
potential energy. For example, chemical potential energy is stored
in the food you eat. Doing work on an elastic band by stretching 
it stores elastic potential energy in the elastic band. A battery 
contains both chemical and electrical potential energy.

Figure 6.18
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Potential Energy and the
Work-Energy Theorem6.3

• Define gravitational potential
energy.

• Define elastic potential energy.

• Use algebraic deductions to
develop the work-energy 
theorem.

• Investigate forced stretch 
relationships for springs.

• gravitational potential energy

• elastic

• elastic potential energy

• Hooke’s law

• restoring force

• spring constant

 T E R M S
K E Y

O U T C O M E S
S E C T I O N



Gravitational Potential Energy
For hundreds of years, people have been using the gravitational
potential energy stored in water. Many years ago, people built
water wheels like the one shown in Figure 6.19. Today, we create
huge reservoirs and dams that convert the potential energy of
water into electricity.

To determine the factors that contribute to gravitational poten-
tial energy, try another “thought experiment.” Ask yourself the 
following questions.

■ If a golf ball and a Ping Pong ball were dropped from the same
distance, which one might you try to catch and which one
would you avoid?

■ If one golf ball was dropped a distance of 10 cm and another a
distance of 10 m, which one would hit the ground with a 
greater force?

■ Which golf ball would hit the surface with the greatest force,
one dropped a distance of 1.0 m on Earth or 1.0 m on the Moon? 

Everyday experience tells you that mass and height (vertical
distance between the two positions) contribute to an object’s 
gravitational potential energy. Your knowledge of gravity also
helps you to understand that g, the acceleration due to gravity,
affects gravitational potential energy as well. 

An important characteristic of all forms of potential energy is
that there is no absolute zero position or condition. We measure
only changes in potential energy, not absolute potential energy.
Physicists must always assign a reference position and compare
the potential energy of an object to that position. Gravitational
potential energy depends on the difference in height between two
positions. Therefore, the zero or reference level can be assigned to
any convenient position. We typically choose the reference position
as the solid surface toward which an object is falling or might fall.
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Gravitational
potential energy is stored in the
water. When the water begins to
fall, it gains kinetic energy. As it
falls, it turns the wheel, giving the
wheel kinetic energy.

Figure 6.19

The constant g, the acceleration
due to gravity, affects objects
even when they are not moving.
When something is preventing an
object from falling, such as your
desk holding up your book, g
influences its weight. The weight
of an object is its mass times g. 
If nothing were preventing it 
from falling, your book, or any
other object, would accelerate 
at 9.81 m/s2, the value of g. The
value of g varies with the size and
mass of the planet, moon, or star.
On the Moon, for example, your
book would weigh less and, if
falling, would accelerate at a
lower rate (1.62 m/s2).

PHYSICS FILE
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Quantity Symbol SI unit
gravitational potential 
energy Eg J (joule)

mass m kg (kilogram)

acceleration due to m
s2 (metres per

gravity g second squared)

change in height 
(from reference position) ∆h m (metre)

Unit Analysis
(mass)(acceleration)(height) = kg m

s2 m = N · m = J

Eg = mg∆h

GRAVITATIONAL POTENTIAL ENERGY
Gravitational potential energy is the product of mass, the
acceleration due to gravity, and the change in height.

The equation for gravitational
potential energy in the box on 
the left is an example of what 
physicists call a “special case.”
The numerical value of g, 
9.81 m/s2, applies only to cases
near Earth’s surface. The value
would be different out in space or
on a different planet. Therefore,
because the equation contains g,
the equation itself applies only to
cases close to Earth’s surface.
For example, you could not use
the equation to find the gravita-
tional potential energy of an
astronaut in the International
Space Station.

PHYSICS FILE

Calculating Gravitational Potential Energy
You are about to drop a 3.0 kg rock onto a tent peg. Calculate the
gravitational potential energy of the rock after you lift it to a height
of 0.68 m above the tent peg.

Frame the Problem
Make a sketch of the situation.

■ You do work against gravity when you lift the rock.

■ All of the work gives gravitational potential energy to the rock. 

■ The expression for gravitational potential energy applies.

MODEL PROBLEM 

3.0 kg

A

B

h = 0.68 m∆

Eg = mg∆h

Eg = 0

continued
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Identify the Goal
The gravitational potential energy, Eg, of the rock

Variables and Constants
Known Implied Unknown
m = 3.0 kg g = 9.81 m

s2 Eg

∆h = 0.68 m

Strategy Calculations

The rock has 2.0 × 101 J of gravitational potential energy.

Validate
Doing work on the rock resulted in a change of position of the rock
relative to the tent peg. The work done is now stored by the rock as
gravitational potential energy.

27. A framed picture that is to be hung on the
wall is lifted vertically through a distance of
2.0 m. If the picture has a mass of 4.45 kg,
calculate its gravitational potential energy
with respect to the ground.

28. The water level in a reservoir is 250 m above
the water in front of the dam. What is the
potential energy of each cubic metre of sur-
face water behind the dam? (Take the density
of water to be 1.00 kg/L.)

29. How high would you have to raise a 0.300 kg
baseball in order to give it 12.0 J of gravita-
tional potential energy?

PRACTICE PROBLEMS

Eg = mg∆h

Eg =
(
3.0 kg

)(
9.81 m

s2

)(
0.68 m

)

Eg = 2.0 × 101 kg m
s2 m

Eg = 2.0 × 101 N · m

Eg = 2.0 × 101 J

Use the formula for gravitational
potential energy.

Substitute.

Multiply.

1 N · m is equivalent to 1 J.

250 m

1 m
1 m 1 m

continued from previous page
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Work and Gravitational Potential Energy
To develop a mathematical relationship between work and 
gravitational potential energy, start with the equation for work.

■ Work is the product of the force that is
parallel to the direction of the motion 
and the displacement that the force caused
the object to move. W = F‖∆d

■ Recall from Chapter 4 that the force of
gravity on a mass near Earth’s surface is
given by 

⇀F = m⇀g , where g = 9.81 m/s2.
Since the force of gravity and the 
acceleration due to gravity are always
downward, and since work is a scalar
quantity, we will omit vector notations. F = mg

■ Substitute mg for F into the expression
for work. W = mg∆d

■ Substitute ∆h for height in place of ∆d
to emphasize that the displacement 
vector is vertical. W = mg∆h

■ This is the equation for work done to
lift an object to height ∆h, relative to 
its original position. W = mg∆h

■ The work, W, done on the object has
become gravitational potential energy 
stored in the object by virtue of its position. Eg = mg∆h

Depending on your choice of a reference level, an object may
have some gravitational potential energy before you do work on it.
For example, choose the floor as your reference. If your book was
on the desk, it would have an amount of gravitational potential
energy, mg∆h1, in relation to the floor, where ∆h1 is the height of
the desk. Then you do work against gravity to lift it to the shelf,
where it has gravitational potential energy mg∆h2, where ∆h2 is
the height of the shelf. The work you did changed the book’s 
gravitational potential. You can describe this change 
mathematically as

W = mg∆h2 − mg∆h1

W = Eg2 − Eg1

W = ∆Eg

The mathematical expression above is a representation of the
work-energy theorem in terms of gravitational potential energy.
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• Object A has twice the mass of object B. If object B is 4.0 m
above the floor and object A is 2.0 m above the floor, which 
one has the greater gravitational potential energy relative to 
the floor?

• If both objects in the question above were lowered 1.0 m, would
they still have the same ratio of gravitational potential energies
that they had in their original positions? Explain your reasoning.

• You carry a heavy box up a flight of stairs. Your friend carries 
an identical box on an elevator to reach the same floor as you.
Which one, you or your friend, did the greatest amount of work
on the box against gravity? Explain your reasoning.

Conceptual Problems

Applying the Work-Energy Theorem
A 65.0 kg rock climber did 1.60 × 104 J of work against gravity to
reach a ledge. How high did the rock climber ascend?

Frame the Problem

Identify the Goal
The vertical height, ∆h, that the climber ascended

■ The rock climber did work against gravity.

■ Work done against gravity increased the rock
climber’s gravitational potential energy.

■ The work-energy theorem that applies to
potential energy is appropriate for this 
situation. 

MODEL PROBLEM 
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Variables and Constants
Known Implied Unknown
W = 1.60 × 104 J g = 9.81 m

s2 Eg2

m = 65.0 kg Eg1 = 0 J ∆h

Strategy Calculations

The rock climber ascended 25.1 m.

Validate
The climber did a large amount of work, so you would expect 
that the climb was quite high.

The units canceled to give m, which is correct for height.

∆h = 25.09
kg × m 2

s2

kg × m
s 2

∆h = 25.09 m

∆h = 25.09
kg · m2

s2

kg m
s2

∆h = 25.09 m

Convert J to kg m
2

s2 , so that 

you can cancel units.

∆h = 1.6 × 104 J
65 kg

1.6 × 104 J
65 kg 9.81 m

s2

= ∆hSimplify.

∆h = Eg2

mg
1.6 × 104 J

65 kg 9.81 m
s2

=
65 kg 9.81 m

s2 ∆h
65 kg 9.81 m

s2

Divide both sides of the
equation by the value in
front of ∆h.

Eg2 = mg∆h

Eg2

mg
= mg ∆h

mg

Eg2 = mg∆h

1.6 × 104 J = 65 kg 9.81 m
s2 ∆h

Use the value for gravitational
potential energy to find the
height.

W = Eg2 − Eg1

W + Eg1 = Eg2

1.6 × 104 J + 0 J = Eg2

1.6 × 104 J = Eg2

W = Eg2 − Eg1

1.6 × 104 J = Eg2 − 0 J

Eg2 = 1.6 × 104 J

Choose the starting point as
your reference for gravita-
tional potential energy, so
that Eg1 will be zero. Solve.

Solve for Eg2 firstSubstitute first

W = Eg2 − Eg1

Use the work-energy 
theorem to find the
climber’s gravitational
potential energy from the
amount of work done.

continued



Elastic Potential Energy
When a diver is standing on a diving board, it bends under the
weight of the diver as seen in Figure 6.20. When the diver leaves
the board, it returns to its original shape. Many objects can stretch,
compress, bend, or change in shape in some way. If an object can
return to its original condition, as does the diving board, it is said
to be elastic. Since the object can undergo motion when the force
is removed, there must have been energy stored in the object due
to its condition. This form of stored energy is called elastic potential
energy. In this section, you will examine elastic potential energy
in the form of stretched and compressed springs.
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30. A student lifts her 2.20 kg pile of textbooks
into her locker from where they rest on the
ground. She must do 25.0 J of work in order
to lift the books. Calculate the height that the
student must lift the books.

31. A 46.0 kg child cycles up a large hill to a
point that is a vertical distance of 5.25 m
above the starting position. Find 

(a) the change in the child’s gravitational
potential energy 

(b) the amount of work done by the child
against gravity

32. A 2.50 kg pendulum is raised vertically 
65.2 cm from its rest position. Find the gravi-
tational potential energy of the pendulum.

33. A roller-coaster train lifts its passengers up
vertically through a height of 39.4 m from its

starting position. Find the change in gravita-
tional potential energy if the mass of the
train and its passengers is 3.90 × 103 kg. 

34. The distance between the sixth and the
eleventh floors of a building is 30.0 m. The
combined mass of the elevator and its con-
tents is 1.35 × 103 kg.

(a) Find the gravitational potential energy of
the elevator when it stops at the eighth
floor, relative to the sixth floor. 

(b) Find the gravitational potential energy of
the elevator when it pauses at the
eleventh floor, relative to the eighth floor.

(c) Find the gravitational potential energy of
the elevator when it stops at the eleventh
floor, relative to the sixth floor.

PRACTICE PROBLEMS

continued from previous page

Elastic
potential energy is
stored in this bent 
diving board.

Figure 6.20



I N V E S T I G A T I O N  6-A

Force and Spring Extension

TARGET SKILLS

Performing and recording
Analyzing and interpreting
Communicating results

Problem
What relationship exists between the force
applied to a spring and its extension?

Equipment  
■ retort stand and C-clamp
■ weight hanger and accompanying set of masses
■ coil spring
■ ring clamp 
■ metre stick

Wear protective eye goggles during 
this investigation.

Procedure
1. Clamp the retort stand firmly to the desk. 

2. Attach the ring clamp close to the top of the
retort stand.

3. Hang the spring by one end from the ring
clamp.

4. Prepare a data table with the headings: Mass
on hanger, m(kg); Applied force, F(N); Height
of hanger above desk, h(m); and Extension of
spring, x(m).

5. Attach the weight holder and measure its
distance above the desktop. Record this
value in the first row of the table. This value
will be your equilibrium value, ho , at which
you will assign the value of zero to the 
extension of the spring, x. Put these values 
in the first line of your table.

6. To create an applied force, add a mass to the
weight holder. Wait for the spring to come 
to rest and measure the height of the weight
holder above the desk. Record these values
in the table.

7. Complete the second row in the table by 
calculating the value of the applied force
(weight of the mass) and the extension of 
the spring (x = ho − h).

8. Continue by adding more masses until you
have at least five sets of data. Make sure that
you do not overextend the spring.

Analyze and Conclude
1. Draw a graph of the applied force versus the

extension of the spring. Note: Normally, you
would put the independent variable (in this
case, the applied force) on the x-axis and the
dependent variable (in this case, the exten-
sion of the spring) on the y-axis. However,
the mathematics will be simplified in this
case by reversing the position of the variables.

2. Draw a smooth curve through the data points.

3. Describe the curve and write the equation for
the curve. 

4. State the relationship between the applied
force and the extension.

5. When the spring is at rest, what is the rela-
tionship between the applied force and the
force that the spring exerts on the mass? This
force is usually referred to as the “restoring
force.” Restate the force/extension relationship
in terms of the restoring force of the spring.

CAUTION

spring
restoring force

applied force
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Hooke’s Law
In Investigation 6-A, you examined the relationship between the
extension of a spring and the force exerted on it. You observed
that when a force causes the spring to stretch, the spring exerts a
force in a direction that will return it to its original length. Many
springs can be compressed as well as stretched and, in either case,
will exert a force in the direction that will restore their original
shape. This force exerted by the spring, called the restoring force,
always acts in the direction opposite to the direction that the
spring is stretched or compressed. This property of elastic objects
such as springs  is known as Hooke’s law. A graphical illustration
of this law for an extended spring is shown in Figure 6.21.

Since the data produce a straight line, the equation can be 
written in the form y = mx + b, where m is the slope and b is the
y-intercept. The slope of the line describing the properties of a
spring, called the spring constant, is symbolized by k and has
units of newtons/metre. Each spring has its own constant that
describes the amount of force that is necessary to stretch (or 
compress) the spring a given amount. In your investigation, you
were directed to assign the reference or zero position of your
spring as the position of the spring with no applied force. As a
result, x was zero when F was zero. This choice is the accepted
convention for working with springs, and it makes the y-intercept
equal to zero because the line on the graph passes through the 
origin. This relationship leads to the mathematical form of Hooke’s
law (which is summarized in the following box): −Fa = kx , where 
Fa is the magnitude of the applied force, x is the magnitude of 
the extension or compression, and k is the spring constant.

Quantity Symbol SI unit
applied force F N (newtons)

spring constant k N
m

(newtons per metre)

amount of extension or 
compression of the spring x m (metres)

Unit Analysis

newtons =
( newtons

metre

)
(metre) N = N

m
m = N

F = −kx

HOOKE’S LAW
The applied force is directly proportional to the extension or
compression of a spring.
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The relationship
between the restoring force and
the extension of a spring is linear.

Figure 6.21
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Hooke’s Law in an Archery Bow
A typical compound archery bow requires a force of 133 N to hold
an arrow at “full draw” (pulled back 71 cm). Assuming that the
bow obeys Hooke’s law, what is its spring constant?

Frame the Problem
■ When an archer draws a bow, the applied force does work on the

bow, giving it elastic potential energy.

■ Hooke’s law applies to this problem.

Identify the Goal
The spring constant, k, of the bow

Variables and Constants
Known Unknown
Fa = 133 N
x = 71 cm

k

Strategy Calculations

The spring constant of the bow is about 1.9 × 102 N
m

.

Validate
When units are carried through the calculation, the final quantity
has units of N/m, which are correct for the spring constant.

Fa = kx

k = Fa
x

k = 133 N
0.71 m

k = 187.32 N
m

k ≅ 1.9 × 102 N
m

Use Hooke’s law (applied force form).

Solve for the spring constant.

Substitute numerical values and solve.

MODEL PROBLEM 
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continued



continued from previous page

Work and Elastic Potential Energy
The graph of Hooke’s law in Figure 6.21 not only gives informa-
tion about the forces and extensions for a spring (or any elastic
substance), you can also use it to determine the quantity of poten-
tial energy stored in the spring. As discussed previously, you can
find the amount of work done or energy change by calculating the 
area under a force-versus-position graph. The Hooke’s law graph 
is such a graph, since extension or compression is simply a 
displacement. The area under the graph, therefore, is equal to 
the amount of potential energy stored in the spring, as illustrated
in Figure 6.22.

The triangular area under the Hooke’s law graph gives you
the amount of elastic potential energy stored in the spring at any amount 
of extension.

As you can see in Figure 6.22, the area under the curve of
restoring force versus extension of a spring is a triangle. You can
use the geometry of the graph to derive an equation for the elastic
potential energy stored in a spring.

Figure 6.22

Magnitude of 
extension or compression (x)

height = F
height = kx1
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35. A spring scale is marked from 0 to 50 N. 
The scale is 9.5 cm long. What is the spring
constant of the spring in the scale?

36. A slingshot has an elastic cord tied to a 
Y-shaped frame. The cord has a spring 
constant of 1.10 × 103 N/m. A force of 
455 N is applied to the cord.

(a) How far does the cord stretch? 

(b) What is the restoring force from the
spring? 

37. The spring in a typical Hooke’s law appara-
tus has a force constant of 1.50 N/m and a
maximum extension of 10.0 cm. What is the
largest mass that can be placed on the spring
without damaging it?

PRACTICE PROBLEMS

A perfectly elastic material will
return precisely to its original
form after being deformed, such
as stretching a spring. No real
material is perfectly elastic. Each
material has an elastic limit, and
when stretched to that limit, will
not return to its original shape.
The graph below shows that
when something reaches its 
elastic limit, the restoring force
does not increase as rapidly as it
did in its elastic range.

x

F

elastic limit

elastic
 range

non-elastic
range

PHYSICS FILE



The equation you just derived applies to any perfectly elastic 
system and is summarized in the box below.

Quantity Symbol SI unit
elastic potential energy Ee J (joules)

spring constant k N
m

(newtons per metre)

length of extension 
or compression x m (metres)

Unit Analysis

joule = newton
metre

metre2 J =
( N

m

)
m2 = N · m = J

Ee = 1
2 kx2

ELASTIC POTENTIAL ENERGY
The elastic potential energy of a perfectly elastic material is
one half the product of the spring constant and the square of
the length of extension or compression.

Ee = 1
2 kx2■ The expression is valid for any

value of x.

Ee = 1
2 (x1)(kx1)

Ee = 1
2 kx2

1

■ Substitute the values into the
expression for elastic potential
energy.

height = F(x1)

F(x1) = kx1

height = kx1

■ The height of the triangle is the
force at an extension of x1.

base = x1

■ The base of the triangle is the
magnitude of extension or 
compression of the spring, x1.

Ee = A

Ee = 1
2 (base)(height)

■ The elastic potential energy
stored in a spring is the area
under the curve.

A = 1
2 (base)(height)

■ Write the equation for the area
of a triangle.
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Robert Hooke (1635–1703) was
one of the most renowned scien-
tists of his time. His studies in
elasticity, which resulted in the
law being named after him,
allowed him to design better 
balance springs for watches. 
He also contributed to our under-
standing of optics and heat. In
1663, he was elected as a Fellow
of the Royal Society in London.
His studies ranged from the
microscopic — he observed and
named the cells in cork and
investigated the crystal structure
of snowflakes — to astronomy —
his diagrams of Mars allowed
others to measure its rate of 
rotation. He also proposed the
inverse square law for planetary
motion. Newton used this rela-
tionship in his law of universal
gravitation. Hooke felt that he had
not been given sufficient credit by
Newton for his contribution, and
the two men remained antagonis-
tic for the rest of Hooke’s life.

PHYSICS FILE



Elastic Potential Energy of a Spring
A spring with spring constant of 75 N/m is resting on a table. 

(a) If the spring is compressed a distance of 28 cm, what is the
increase in its potential energy? 

(b) What force must be applied to hold the spring in this position?

Frame the Problem
■ There is no change in the gravitational potential energy of the spring.

■ The elastic potential energy of the spring increases as it is compressed.

■ The applied force is equal in magnitude and opposite in direction to the
restoring force.

■ Hooke’s law and the definition of elastic potential energy apply to
this problem.

Identify the Goal
The elastic potential energy, Ee, stored in the spring
The applied force, Fa, required to compress the spring

Variables and Constants
Known Unknown

k = 75 N
m

x = 0.28 m

Ee

Fa

Strategy Calculations

(a) The potential energy of the spring increases by 2.9 J when it is
compressed by 28 cm. 

(b) A force of 21 N is required to hold the spring in this position.

F = −kx

F = −
(
75 N

m

)
(0.28 m)

F = −21 N

Use Hooke’s law to calculate the
force at 28 cm compression.

Ee = 1
2 kx2

Ee = 1
2

(
75 N

m

)
(0.28 m)2

Ee = 2.94 J

Ee ≅ 2.9 J

Apply the equation for elastic 
potential energy.
Substitute and solve.

MODEL PROBLEM 
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Validate
Round the given information to 80 N and 0.3 m and do mental multiplication.
The resulting estimated change in elastic potential energy is 3.6 J and the 
estimated applied force is 24 N. The exact answers are reasonably close to
these estimated values. In addition, a unit analysis of the first part yields
an answer in N · m or joules, while the second answer is in newtons.

38. An object is hung from a vertical spring,
extending it by 24 cm. If the spring constant
is 35 N/m, what is the potential energy of the
stretched spring?

39. An unruly student pulls an elastic band that
has a spring constant of 48 N/m, producing a

2.2 J increase in its potential energy. How far
did the student stretch the elastic band?

40. A force of 18 N compresses a spring by 
15 cm. By how much does the spring’s
potential energy change?

PRACTICE PROBLEMS
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1. Is gravitational potential energy always
measured from one specific reference point?
Explain. 

2. Define the term “potential” as it applies
to “gravitational potential energy.”

3. Describe what happens to the gravita-
tional potential energy of a stone dropped
from a bridge into a river below. How has
the amount of gravitational potential energy
changed when the stone is (a) halfway
down, (b) three quarters of the way down,
and (c) all of the way down?

4. Your physics textbook is sitting on a
shelf above your desk. Explain what is
wrong with the statement, “The gravita-
tional potential energy of the book is 20 J.”

5. The following is the derivation of the
relationship between work and gravitational
potential energy. 

W = F‖∆d
W = mg∆d
W = mg∆h

(a) Explain why mg could be substituted
for force in this derivation but not in the
derivation for the relationship between
work and kinetic energy.

(b) Explain why ∆h was substituted for ∆d.

6. An amount of work, W, was done on
one ball to raise it to a height h. In terms of
W, how much work must you do on four
balls, all identical to the first, to raise them
to twice the height h?

7. Explain how each of the following
behave like a spring.

(a) a pole used in pole-vaulting

(b) the strings in a tennis racquet

(c) the string on a bow

8. Prove that the expression for elastic
potential energy has units equivalent to 
the joule.

9. In what way is a spring similar to a
chemical bond?

10. Describe an investigation to determine 
the force-extension characteristics of an
archery bow.

I
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I

K/U

K/U

C

C

C

K/U

K/U
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