
The crash in the photograph occurred at the start of the race.
The race was temporarily suspended while the debris was cleared from the
track. When the race was restarted, the driver of the car that is “airborne” 
in the photograph was in his backup car, ready to go.

The driver of the race car in the above photograph walked away
from the crash without a scratch. Luck had little to do with this
fortunate outcome, though — a practical application of Newton’s
laws of motion by the engineers who designed the car and its 
safety equipment protected the driver from injury.

You have learned that Newton’s laws can explain and predict 
a wide variety of patterns of motion. How can some of the same
laws that guide the stars and planets protect a race car driver who
is in a crash?

When Newton originally formulated his laws of motion, he
expressed them in a somewhat different form than you see in most
textbooks today. Newton emphasized a concept called a “quantity
of motion,” which is defined as the product of an object’s mass
and its velocity. Today, we call this quantity “momentum.” In this
section, you will see how the use of momentum allows you to 
analyze and predict the motion of objects in countless situations
that you have not yet encountered.

There are a few types of interactions for which it is difficult to
determine or describe the forces acting on an object or on a group of
objects. These interactions include collisions, explosions, and recoil.
For these more complex scenarios, it is easier to observe the motion

Figure 5.18
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• Apply Newton’s laws of motion
to explain momentum.

• Design an experiment identify-
ing and controlling major 
variables.

• Describe the functioning of
technology devices based on
principles of momentum.

• Analyze the influence of society
on scientific and technological
endeavours in dynamics.

• momentum

• impulse

• impulse-momentum theorem

 T E R M S
K E Y

O U T C O M E S
S E C T I O N

Momentum and 
Newton’s Laws5.4



of the objects before and after the interaction and then analyze the
interaction by using Newton’s concept of a quantity of motion.

Defining Momentum
Although you have not used the mathematical expression for
momentum, you probably have a qualitative sense of its meaning.
For example, when you look at the photographs in Figure 5.19,
you could easily list the objects in order of their momentum.
Becoming familiar with the mathematical expression for momen-
tum will help you to analyze interactions between objects.

Momentum is the product of an object’s mass and its velocity,
and is symbolized by ⇀p . Since it is the product of a vector and 
a scalar, momentum is a vector quantity. The direction of the
momentum is the same as the direction of the velocity.

If the operator of each of these vehicles was suddenly to
slam on the brakes, which vehicle would take the longest time to stop?

Quantity Symbol SI unit

momentum ⇀p kg · m
s

(kilogram metres per second)

mass m kg (kilograms)

velocity ⇀v m
s

(metres per second)

Unit Analysis
(mass)(velocity) = kg · m

s
= kg · m

s
Note: Momentum does not have a unique unit of its own.

⇀p = m⇀v

DEFINITION OF MOMENTUM
Momentum is the product of an object’s mass and its velocity.

Figure 5.19
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Momentum of a Hockey Puck
Determine the momentum of a 0.300 kg hockey puck travelling
across the ice at a velocity of 5.55 m/s[N].

Frame the Problem
■ The mass is moving; therefore, it has momentum.

■ The direction of an object’s momentum is the same as the direction
of its velocity. 

Identify the Goal
The momentum, ⇀p , of the hockey puck

Variables and Constants
Known Unknown
m = 0.300 kg
⇀v = 5.55 m

s
[N]

⇀p

Strategy Calculations

The momentum of the hockey puck was 1.67 kg · m
s

[N].

Validate
Approximate the solution by multiplying 0.3 kg times 6 m/s. The magnitude
of the momentum should be slightly less than this product, which is
1.8 kg · m/s. The value, 1.67 kg · m/s, fits the approximation very well. The
direction of the momentum is always the same as the velocity of the object.

29. Determine the momentum of the following
objects.

(a) 0.250 kg baseball travelling at 46.1 m/s[E]

(b) 7.5 × 106 kg train travelling west at 
125 km/h

(c) 4.00 × 105 kg jet travelling south at 
755 km/h

(d) electron (9.11 × 10−31 kg) travelling north
at 6.45 × 106 m/s

PRACTICE PROBLEM

⇀p = m⇀v
⇀p = (0.300 kg)

(
5.55 m

s
[N]

)
⇀p = 1.665 kg · m

s
[N]

⇀p ≅ 1.67 kg · m
s

[N]

Use the equation that defines momentum.

MODEL PROBLEM 
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Defining Impulse
Originally, Newton expressed his second law by stating that the
change in an object’s motion (rate of change of momentum) is pro-
portional to the force impressed on it. Expressed mathematically,
his second law can be written as follows.

⇀F = ∆⇀p
∆t

To show that this expression is fundamentally equivalent to the
equation that you have learned in the past, take the following
steps.

Knowing that 
⇀F = ∆⇀p

∆t
is a valid expression of Newton’s second 

law, you can mathematically rearrange the expression to demon-
strate some very useful relationships involving momentum. When
you multiply both sides of the equation by the time interval, you
derive a new quantity, 

⇀F∆t , called “impulse.”
⇀F∆t = ∆⇀p

Impulse is the product of the force exerted on an object and 
the time interval over which the force acts, and is often given the
symbol 

⇀J . Impulse is a vector quantity, and the direction of the
impulse is the same as the direction of the force that causes it.

⇀F =
⇀pf −⇀pi

∆t

⇀F = m⇀vf − m⇀vi
∆t

⇀F = m(⇀vf −⇀vi)
∆t

⇀F = m∆⇀v
∆t

⇀a = ∆⇀v
∆t

⇀F = m⇀a

■ Write the change in momentum as
the difference of the final and initial
momenta.

■ Write momentum in terms of mass
and velocity.

■ If you assume that m is constant
(that is, does not change for the
duration of the time interval), you
can factor out the mass, m.

■ Recall that the definition of average
acceleration is the rate of change of
velocity, and substitute an ⇀a into
the above expression.
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In reality, Newton expressed his 
second law using the calculus that 
he invented. The procedure involves
allowing the time interval to become
smaller and smaller, until it becomes
“infinitesimally small.” The result
allows you to find the instantaneous
change in momentum at each instant
in time. The formulation of Newton’s
second law using calculus looks 
like this.

⇀
F = d⇀p

dt

Math Link



Quantity Symbol SI unit
impulse

⇀J N · s (newton seconds)

force
⇀F N (newtons)

time interval ∆t s (seconds)

Unit Analysis
(impulse) = (force)(time interval) = N · s

Note: Impulse is equal to the change in momentum, which 

has units of kg · m
s

. To show that these units are equivalent 

to the N · s, express N in terms of the base units.

N · s = kg · m
s2 · s = kg · m

s

⇀J =⇀F∆t

DEFINITION OF IMPULSE
Impulse is the product of force and the time interval.
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Impulse on a Golf Ball
If a golf club exerts an average force of 5.25 × 103 N[W] on a golf
ball over a time interval of 5.45 × 10−4 s, what is the impulse of 
the interaction?

Frame the Problem
■ The golf club exerts an average force on the golf ball for a period

of time. The product of these quantities is defined as impulse.

■ Impulse is a vector quantity.

■ The direction of the impulse is the same as the direction of its
average force. 

Identify the Goal
The impulse, 

⇀J , of the interaction

Variables and Constants
Known Unknown
⇀F = 5.25 × 103 N[W]
∆t = 5.45 × 10−4 s

⇀J

MODEL PROBLEM 

⇀F = m⇀a Is Correct!
When students read the sentence
“If you assume that m is constant
(that is, does not change for the
duration of the time interval), you
can factor out the mass, m,” they
sometimes think that the result 
of the derivation, 

⇀
F = m⇀a , is

wrong. However, this equation 
is a special case of Newton’s
second law that is correct for 
all cases in which the mass, m,
is constant. Since the mass is
constant in a very large number
of situations, it is acceptable 
to consider 

⇀
F = m⇀a as a 

valid statement of Newton’s 
second law.

MISCONCEPTION

continued



Strategy Calculations

When the golf club strikes the golf ball, the impulse to
drive the ball down the fairway is 2.86 N · s[W].

Validate
Round the values in the data to 5000 N[W] and 0.0006 s
and do mental multiplication. The product is 3 N · s[W].
The answer, 2.86 N · s[W], is very close to the estimate.

30. A sledgehammer strikes a spike with an 
average force of 2125 N[down] over a time
interval of 0.0205 s. Calculate the impulse of
the interaction.

31. In a crash test, a car strikes a wall with an
average force of 1.23 × 107 N[S] over an
interval of 21.0 ms. Calculate the impulse.

32. In a crash test similar to the one described in
problem 31, another car, with the same mass
and velocity as the first car, experiences an
impulse identical to the value you calculated
in problem 31. However, the second car was
designed to crumple more slowly than the
first. As a result, the duration of the interac-
tion was 57.1 ms. Determine the average
force exerted on the second car.

PRACTICE PROBLEMS

⇀J =⇀F∆t
⇀J = (5.25 × 103 N[W])(5.45 × 10−4 s)
⇀J = 2.8612 N · s[W]
⇀J ≅ 2.86 N · s[W]

Apply the equation that defines impulse.
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continued from previous page

When you want to use mental 
math to approximate an answer to
validate your calculations, you can
usually find the best approximation
by rounding one value up and 
the other value down before 
multiplying.

PROBLEM TIP

The Impulse-Momentum Theorem
You probably noticed that the sample and practice problems above
always referred to “average force” and not simply to “force.”
Average force must be used to calculate impulse in these short,
intense interactions, because the force changes continually
throughout the few milliseconds of contact of the two objects. 
For example, when a golf club first contacts a golf ball, the force 
is very small. Within milliseconds, the force is great enough to
deform the ball. The ball then begins to move and return to its orig-
inal shape and the force soon drops back to zero. Figure 5.20 shows
how the force changes with time. You could find the impulse by
determining the area under the curve of force versus time.

In many collisions, it is exceedingly difficult to make the 
precise measurements of force and time that you need in order 
to calculate the impulse. The relationship between impulse and
momentum provides an alternative approach to analyzing such
collisions, as well as other interactions. By analyzing the momen-
tum before and after an interaction between two objects, you can
determine the impulse. 

You can find the
impulse of an interaction (area
under the curve) by using the
same mathematical methods that
you used to find displacement
from velocity-versus-time curves.

Figure 5.20
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When you first rearranged the expression for Newton’s second
law, you focussed only on the concept of impulse, 

⇀F∆t . By taking
another look at the equation 

⇀F∆t = ∆⇀p , you can see that impulse
is equal to the change in the momentum of an object. This rela-
tionship is called the impulse-momentum theorem and is often
expressed as shown in the box below.

Quantity Symbol SI unit
force

⇀F N (newtons)

time interval ∆t s (seconds)

mass m kg (kilograms)

initial velocity ⇀v1
m
s

(metres per second)

final velocity ⇀v2
m
s

(metres per second)

Unit Analysis
(force)(time interval) = (mass)(velocity)

N · s = kg m
s

kg · m
s2 s = kg · m

s
Note: Impulse is a vector quantity. The direction of the
impulse is the same as the direction of the change in the
momentum.

⇀F∆t = m⇀v2 − m⇀v1

IMPULSE-MOMENTUM THEOREM
Impulse is the difference of the final momentum and initial
momentum of an object involved in an interaction.
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Impulse and Average Force of a Tennis Ball
A student practises her tennis volleys by hitting a tennis ball against a wall. 

(a) If the 0.060 kg ball travels 48 m/s before hitting the wall and then
bounces directly backward at 35 m/s, what is the impulse of the 
interaction? 

(b) If the duration of the interaction is 25 ms, what is the average force
exerted on the ball by the wall?

Frame the Problem
■ The mass and velocities before and after the interaction are known, so it

is possible to calculate the momentum before and after the interaction.

■ Momentum is a vector quantity, so all calculations must include directions. 

MODEL PROBLEM 

Refer to your Electronic Learning
Partner to enhance your under-
standing of momentum.

ELECTRONIC
LEARNING PARTNER

continued



■ Since the motion is all in one dimension, use plus and minus to denote
direction. Let the initial direction be the positive direction.

■ You can find the impulse from the change in momentum. 

Identify the Goal
The impulse, 

⇀J , of the interaction

The average force, 
⇀F , on the tennis ball

Variables and Constants
Known Unknown
m = 0.060 kg ⇀v1 = 48 m

s
⇀v2 = −35 m

s

⇀J

∆t = 25 ms = 0.025 s
⇀F

Strategy Calculations

(a) The impulse was 5.0 kg · m/s in a direction opposite to the initial
direction of the motion of the ball.

(b) The average force of the wall on the tennis ball was 2.0 × 102 N in
the direction opposite to the initial direction of the ball.

Validate

kg · m
s
s

= kg · m
s2 = N

Check the units for the second part of the
problem.

⇀F∆t = m(⇀v2 −⇀v1)
⇀F∆t = 0.060 kg

(
−35 m

s
− 48 m

s

)
⇀F∆t = (0.060 kg)

(
−83 m

s

)
⇀F∆t = −4.98 kg · m

s
≅ − 5.0 kg · m

s

Use an alternative mathematical technique
for the impulse calculation by factoring
out the mass, subtracting the velocities,
then multiplying to see if you get the 
same answer.

⇀F∆t = −4.98 kg · m
s

⇀F =
−4.98 kg · m

s
∆t

⇀F =
−4.98 kg · m

s
0.025 s

⇀F = −199.2 N
⇀F ≅ − 2.0 × 102 N

Use the definition of impulse to find the
average force.

⇀F∆t = m⇀v2 − m⇀v1

⇀F∆t = 0.060 kg
(
−35 m

s

)
− 0.060 kg

(
48 m

s

)
⇀F∆t = −2.1 kg · m

s
− 2.88 kg · m

s
⇀F∆t = −4.98 kg · m

s
⇀F∆t ≅ − 5.0 kg · m

s

Use the impulse-momentum theorem to
calculate the impulse.
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Whenever you use a result from
one step in a problem as data for
the next step, use the unrounded
form of the data.

PROBLEM TIP



33. The velocity of the serve of some profession-
al tennis players has been clocked at 43 m/s
horizontally. (Hint: Assume that any vertical
motion of the ball is negligible and consider
only the horizontal direction of the ball after
it was struck by the racquet.) If the mass of
the ball was 0.060 kg, what was the impulse
of the racquet on the ball?

34. A 0.35 kg baseball is travelling at 46 m/s
toward the batter. After the batter hits the
ball, it is travelling 62 m/s in the opposite
direction. Calculate the impulse of the bat on
the ball.

35. A student dropped a 1.5 kg book from a
height of 1.75 m. Determine the impulse that
the floor exerted on the book when the book
hit the floor.

PRACTICE PROBLEMS
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Use the crash test provided by
your Electronic Learning Partner 
to enhance your understanding 
of momentum.

ELECTRONIC
LEARNING PARTNER

www.mcgrawhill.ca/links/
atlphysics

If your school has probeware equip-
ment, visit the above Internet site
and follow the links for an in-depth
activity on impulse and momentum.

PROBEWARE

Impulse and Auto Safety
One of the most practical and important applications of impulse is
in the design of automobiles and their safety equipment. When a
car hits another car or a solid wall, little can be done to reduce 
the change in momentum. The mass of the car certainly does not
change, while the velocity changes to zero at the moment of
impact. Since you cannot reduce the change in momentum, 
you cannot reduce the impulse. However, since impulse (

⇀F∆t)
depends on both force and time, engineers have found ways to
reduce the force exerted on car occupants by extending the time
interval of the interaction. Think about how the design of a car 
can expand the duration of a crash.

In the early days of auto manufacturing, engineers and design-
ers thought that a very strong, solid car would be ideal. As the
number of cars on the road and the speed of the cars increased,
the number and seriousness of accident injuries made it clear that
the very sturdy cars were not protecting car occupants. By the late
1950s and early 1960s, engineers were designing cars with very
rigid passenger cells that would not collapse onto the passengers,
but with less rigid “crumple zones” in the front and rear, as shown
in Figure 5.21. 

Although a car crash seems almost instantaneous, the time
taken for the front or rear of the car to “crumple” is great enough to signifi-
cantly reduce the average force of the impact and, therefore, the average
force on the passenger cell and the passengers.

Figure 5.21

passenger cell

crumple zones crumple zones



Bend a Wall
Designing 
Crumple Zones

Q U I C K

L A B

TARGET SKILLS

Hypothesizing
Performing and recording
Analyzing and interpreting
Communicating results

How soft is too soft and how rigid is too rigid
for an effective vehicle crumple zone? In this
lab, you will design and test several materials to
determine the optimum conditions for passen-
gers in a vehicle.

Obtain a rigid (preferably metal) toy vehicle
to simulate the passenger cell of an automobile.
The vehicle must have an open space in the
centre for the “passenger.” Make a passenger out
of putty, modelling clay, or some material that
will easily show “injuries” in the form of dents
and deformations. 

Design and build some type of device that
will propel your vehicle rapidly into a solid
wall (or stack of bricks) with nearly the same
speed in all trials. The wall must be solid, but
you will need to ensure that you do not damage
the wall. Perform several crash tests with your
vehicle and passenger and observe the types of
injuries and the extent of injuries caused by 
the collision. 

Select a variety of materials, from very soft to
very hard, from which to build crumple zones.
For example, you could use very soft foam rub-
ber for the soft material. The thickness of each
crumple zone must be approximately one third
the length of your vehicle.

One at a time, attach your various crumple
zones to your vehicle and test the effectiveness
of the material in reducing the severity of injury
to the passenger. Be sure that the vehicle travels
at the same speed with the crumple zone
attached as it did in the original crash tests
without a crumple zone. Also, be sure that the
materials you use to attach the crumple zones
do not influence the performance of the crumple
zones. Formulate an hypothesis about the rela-
tive effectiveness of each of the various crumple
zones that you designed.

Analyze and Conclude
1. How do the injuries to the passenger that

occurred with a very soft crumple zone 
compare to the injuries in the original 
crash tests?

2. How do the injuries to the passenger that
occurred with a very rigid crumple zone
compare to the injuries in the original 
crash tests?

3. Describe the difference in the passenger’s
injuries between the original crash tests and
the test using the most effective crumple
zone material.

Apply and Extend
4. The optimal crumple zone for a very massive

car would be much more rigid than one for 
a small, lightweight car. However, a crash
between a large and a small car would result
in much greater damage to the small car.
Write a paragraph responding to the question
“Should car manufacturers consider other
cars on the road when they design their 
own cars, or should they ignore what might
happen to other manufacturers’ cars?”

5. Crumple zones are just one of many types of
safety systems designed for cars. Should the
government regulate the incorporation of
safety systems into cars? Give a rationale for
your answer.

6. Some safety systems are very costly. Who
should absorb the extra cost — the buyer, 
the manufacturer, or the government? For
example, should the government provide a
tax break or some other monetary incentive
for manufacturers to build or consumers to
buy cars with highly effective safety systems?
Give a rationale for your answer.
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When a rigid car hits a wall, a huge force stops the car almost
instantaneously. The car might even look as though it was only
slightly damaged. However, parts of the car, such as the steering
wheel, windshield, or dashboard, exert an equally large force on
the passengers, stopping them exceedingly rapidly and possibly
causing very serious injuries.

When a car with well-designed crumple zones hits a wall, the
force of the wall on the car causes the front of the car to collapse
over a slightly longer time interval than it would in the absence of
a crumple zone. Since 

⇀F∆t is constant and ∆t is larger, the average
force, 

⇀F , is smaller than it would be for a rigid car. Although
many other factors must be considered to reduce injury in colli-
sions, the presence of crumple zones has had a significant effect 
in reducing the severity of injuries in automobile accidents.

The concept of increasing the duration of an impact applies to
many forms of safety equipment. For example, the linings of safety
helmets are designed to compress relatively slowly. If the lining
was extremely soft, it would compress so rapidly that the hard
outer layer of the helmet would impact on the head very quickly.
If the lining did not compress at all, it would collide with the
head over an extremely short time interval and cause serious
injury. Each type of sport helmet is designed to compress in a way
that compensates for the type of impacts expected in that sport. 
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www.mcgrawhill.ca/links/
atlphysics

To learn more about the design and
testing of helmets and other safety
equipment in sports, go to the above
Internet site and click on Web Links.

Web Link

1. Define momentum qualitatively and 
quantitatively.

2. What assumption do you have to make
in order to show that the two forms of 

Newton’s second law (
⇀F = ∆⇀p

∆t
and

⇀F = m⇀a ) are equivalent? 

3. Try to imagine a situation in which the
form 

⇀F = m⇀a would not apply, but the form
⇀F = ∆⇀p

∆t
could be used. Describe that situa-

tion. How could you test your prediction?

4. State the impulse-momentum theorem
and give one example of its use.

5. A bungee jumper jumps from a very
high tower with bungee cords attached to
his ankles. As he reaches the end of the
bungee cord, it begins to stretch. The cord
stretches for a relatively long period of
time and then it recoils, pulling him back

up. After several bounces, he dangles
unhurt from the bungee cord (if he carried
out the jump with all of the proper safety
precautions). If he jumped from the same
point with an ordinary rope attached to his
ankles, he would be very severely injured.
Use the concept of impulse to explain the
difference in the results of a jump using a
proper bungee cord and a jump using an
ordinary rope.

MC

C

I

K/U

K/U

5.4 Section Review

In your unit project, you will consider how
the impulse-momentum theorem can be
applied to collisions and explosions.
■ How could you predict the magnitude 

of impulse that sent the Mont Blanc’s
anchor shaft and its cannon barrel 
blasting in opposite directions?

UNIT PROJECT PREP


