Appendix D

Mathematical Equations

Equations in Unit 1, Kinematics

Equation	Variables	Name, if any
$\Delta \vec{d}=\vec{d}_{2}-\vec{d}_{1}$	$\begin{aligned} & \Delta \vec{d}=\text { displacement } \\ & \vec{d}_{1}=\text { initial position } \\ & {\overrightarrow{d_{2}}}_{2}=\text { final position } \end{aligned}$	displacement
$\begin{aligned} & \vec{V}_{\text {ave }}=\frac{\Delta \vec{d}}{\Delta t} \\ & \vec{V}_{\text {ave }}=\frac{\vec{d}_{2}-\vec{d}_{1}}{t_{2}-t_{1}} \end{aligned}$	$\begin{aligned} & \overrightarrow{\mathrm{V}}_{\text {ave }}=\text { average velocity } \\ & \Delta \vec{d}=\text { displacement } \\ & \Delta t=\text { time interval } \end{aligned}$	average velocity
$\vec{a}=\frac{\Delta \stackrel{\rightharpoonup}{v}}{\Delta t}$	$\begin{aligned} & \vec{a}=\text { acceleration } \\ & \Delta \vec{v}=\text { change in velocity } \\ & \Delta t=\text { time interval } \end{aligned}$	acceleration
$\begin{aligned} & a=\frac{v_{\mathrm{f}}-v_{\mathrm{i}}}{\Delta t} \\ & v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \\ & \Delta d=\left(\frac{v_{\mathrm{i}}+v_{\mathrm{f}}}{2}\right) \Delta t \\ & \Delta d=v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \end{aligned}$	$\begin{aligned} & a=\text { acceleration } \\ & V_{\mathrm{i}}=\text { initial velocity } \\ & V_{\mathrm{f}}=\text { final velocity } \\ & \Delta t=\text { time interval } \\ & \Delta d=\text { displacement } \end{aligned}$	motion under uniform acceleration

Equations in Unit 2, Dynamics

Equation	Variables	Name, if any
$\vec{F}_{\mathrm{g}}=m \vec{g}$	$\begin{aligned} & \vec{F}_{\mathrm{g}}=\text { force of gravity (weight) } \\ & m=\text { mass } \\ & \vec{g}=\text { acceleration due to gravity (on Earth) } \end{aligned}$	weight
$F_{\mathrm{f}}=\mu \mathrm{F}_{\mathrm{N}}$	$F_{\mathrm{f}}=$ force of friction $\mu=$ coefficient of friction $F_{\mathrm{N}}=$ normal force	friction
$\begin{aligned} & \vec{F}=m \vec{a} \\ & \vec{a}=\frac{\vec{F}}{m} \end{aligned}$	$\begin{aligned} & \vec{F}=\text { force } \\ & m=\text { mass } \\ & \vec{a}=\text { acceleration } \end{aligned}$	Newton's second law
$\vec{F}_{\mathrm{A} \text { on } \mathrm{B}}=-\vec{F}_{\mathrm{B} \text { on } \mathrm{A}}$	\vec{F}_{A} on $\mathrm{B}=$ force of object A acting on object B $\vec{F}_{\mathrm{B} \text { on } \mathrm{A}}=$ force of object B acting on object A	Newton's third law
$\vec{p}=m \vec{V}$	$\begin{aligned} & \vec{p}=\text { momentum } \\ & m=\text { mass } \\ & \vec{v}=\text { velocity } \end{aligned}$	momentum
$\vec{J}=\vec{F} \Delta t$	$\begin{aligned} \vec{J} & =\text { impulse } \\ \vec{F} & =\text { force } \\ \Delta t & =\text { time interval } \end{aligned}$	impulse
$\vec{F} \Delta t=m \vec{V}_{2}-m \vec{V}_{1}$	$\begin{aligned} & \vec{F}=\text { force } \\ & \Delta t=\text { time interval } \\ & m=\text { mass } \\ & \overrightarrow{\vec{V}_{1}}=\text { initial velocity } \\ & \overrightarrow{V_{2}}=\text { final velocity } \end{aligned}$	impulse-momentum theorem

Equations in Unit 3, Momentum and Energy

Equation	Variables	Name, if any		
$\begin{aligned} W & =F_{\\|} \Delta d \\ W & =\|F\| \Delta d \cos \theta \end{aligned}$	$\begin{aligned} & W=\text { work done } \\ & F_{\\|}=\text {magnitude of the force (parallel to } \\ & \text { the displacement) } \\ & \|F\|=\text { magnitude of the force (not parallel } \\ & \text { to the displacement) } \\ & \Delta d=\text { magnitude of the displacement } \\ & \theta=\text { angle between force and } \\ & \text { displacement vectors } \end{aligned}$	work done		
$E_{\mathrm{k}}=\frac{1}{2} m v^{2}$	$\begin{aligned} & E_{\mathrm{k}}=\text { kinetic energy } \\ & m=\text { mass } \\ & V=\text { velocity } \end{aligned}$	kinetic energy		
$E_{\mathrm{g}}=m g \Delta h$	$\begin{aligned} & E_{\mathrm{g}}=\text { gravitational potential energy } \\ & \mathrm{m}=\text { mass } \\ & g=\text { acceleration due to gravity (on Earth) } \\ & \Delta h=\text { change in height (from reference position) } \end{aligned}$	gravitational potential energy		
$F=-k x$	$F=$ applied force $k=$ spring constant $x=$ length of extension/compression of spring	Hooke's law		
$E_{\mathrm{e}}=\frac{1}{2} k x^{2}$	$\begin{aligned} & E_{\mathrm{e}}=\text { elastic energy } \\ & k=\text { spring constant } \\ & x=\text { length of extension/compression } \end{aligned}$	elastic potential energy		
$\begin{aligned} & P=\frac{W}{\Delta t} \\ & P=\frac{E}{\Delta t} \end{aligned}$	$\begin{aligned} & P=\text { power } \\ & E=\text { energy transferred } \\ & W=\text { work done } \\ & \Delta t=\text { time interval } \end{aligned}$	power		
$\begin{aligned} & \text { efficiency }=\frac{E_{0}}{E_{i}} \times 100 \% \\ & \text { efficiency }=\frac{W_{0}}{W_{\mathrm{i}}} \times 100 \% \end{aligned}$	$E_{0}=$ useful output energy $E_{\mathrm{i}}=$ input energy $W_{\mathrm{o}}=$ useful output work $W_{\mathrm{i}}=$ input work efficiency	efficiency		
$E_{\mathrm{k}}^{\prime}+E_{\mathrm{g}}^{\prime}+E_{\mathrm{e}}^{\prime}=E_{\mathrm{k}}+E_{\mathrm{g}}+E_{\mathrm{e}}$	$E_{\mathrm{k}}^{\prime}=$ kinetic energy after process $E_{\mathrm{g}}^{\prime}=$ gravitational potential energy after process $E_{\mathrm{e}}^{\prime}=$ elastic potential energy after process $E_{\mathrm{k}}=$ kinetic energy before process $E_{\mathrm{g}}=$ gravitational potential energy before process $E_{\mathrm{e}}=$ elastic potential energy before process	law of conservation of mechanical energy		
$W_{\text {nc }}=E_{\text {final }}-E_{\text {initial }}$	$W_{\mathrm{nc}}=$ work done by non-conservative forces $E_{\text {final }}=$ mechanical energy of system after process $E_{\text {initial }}=$ mechanical energy of system before process	work done by non-conservative forces		
$m_{A} \vec{V}_{A}+m_{B}{\overrightarrow{V_{B}}}^{\prime}=m_{A}{\overrightarrow{V_{A}^{\prime}}}_{\prime}+m_{B} \vec{V}_{B}^{\prime}$	$M_{\mathrm{A}}=$ mass of object A $M_{\mathrm{B}}=$ mass of object B $\overrightarrow{V_{A}}=$ velocity of object A before collision $\vec{V}_{B}=$ velocity of object B before collision $\vec{V}_{A}^{\prime}=$ velocity of object A after collision $\vec{V}_{\mathrm{B}}^{\prime}=$ velocity of object B after collision	law of conservation of momentum		

Equation	Variables	Name, if any
$\begin{aligned} & T=\frac{\Delta t}{N} \\ & f=\frac{N}{\Delta t} \\ & f=\frac{1}{T} \end{aligned}$	$\begin{aligned} & T=\text { period } \\ & f=\text { frequency } \\ & \Delta t=\text { time interval } \\ & N=\text { number of cycles } \end{aligned}$	period and frequency
$v=f \lambda$	$\begin{aligned} & v=\text { speed } \\ & f=\text { frequency } \\ & \lambda=\text { wavelength } \end{aligned}$	wave equation
$v=331+0.59 T_{\mathrm{C}}$	$V=$ speed of sound $T_{\mathrm{C}}=$ temperature of air	speed of sound in air
$n=\frac{c}{v}$	$\begin{aligned} & n=\text { index of refraction } \\ & c=\text { speed of light in vacuum } \\ & v=\text { speed of light in a specific medium } \end{aligned}$	index of refraction
$\begin{aligned} & \hline \frac{\sin \theta_{\mathrm{i}}}{\sin \theta_{\mathrm{R}}}=\text { constant } \\ & n_{\mathrm{i}} \sin \theta_{\mathrm{i}}=n_{\mathrm{R}} \sin \theta_{\mathrm{R}} \end{aligned}$	$\begin{aligned} & n_{\mathrm{i}}=\text { index of refraction of the incidence medium } \\ & \theta_{\mathrm{i}}=\text { angle of incidence } \\ & n_{\mathrm{R}}=\text { index of refraction of the refracting medium } \\ & \theta_{\mathrm{R}}=\text { angle of refraction } \end{aligned}$	Snell's law
$L_{\mathrm{n}}=(2 n-1) \frac{\lambda}{4}$	$L_{\mathrm{n}}=$ resonance lengths $n=$ a positive integer $\lambda=$ wavelength	resonance lengths in a closed air column
$L_{\mathrm{n}}=\frac{n \lambda}{4}$	$\begin{aligned} & L_{\mathrm{n}}=\text { resonance lengths } \\ & n=\text { a positive integer } \\ & \lambda=\text { wavelength } \end{aligned}$	resonance lengths in an open air column
$\begin{aligned} & f_{\mathrm{n}}=n f_{1} \\ & f_{1}=\frac{V}{2 L} \end{aligned}$	$f_{\mathrm{n}}=$ resonance frequencies $n=$ a positive integer $f_{1}=$ first resonance frequency $v=$ speed of wave $L=$ air column length	resonance frequencies of a fixed-length open air column
$\begin{aligned} & f_{\mathrm{n}}=(2 n-1) f_{1} \\ & f_{1}=\frac{v}{4 L} \end{aligned}$	$f_{\mathrm{n}}=$ resonance frequencies $n=$ a positive integer $f_{1}=$ first resonance frequency $v=$ speed of wave $L=$ air column length	resonance frequencies of a fixed-length closed air column
$f_{\text {beat }}=\left\|f_{2}-f_{1}\right\|$	$f_{\text {beat }}=$ beat frequency $f_{1}=$ frequency of one component wave $f_{2}=$ frequency of other component wave	beat frequency
$\begin{aligned} & n \lambda=d \sin \theta \\ & \text { where } n=0,1,2,3, \ldots \end{aligned}$	$n=$ integer number of full wavelengths $\lambda=$ wavelength of light $d=$ distance between slits $\theta=$ angle between slit separation and line perpendicular to light rays	constructive interference of light waves (bright fringe)

Equation	Variables	Name, if any
$\left(n-\frac{1}{2}\right) \lambda=d \sin \theta$ where $n=0,1,2,3, \ldots$	$n=$ integer number of full wavelengths $\lambda=$ wavelength of light $d=$ distance between slits $\theta=$ angle between slit separation and line perpendicular to light rays	destructive interference of light waves (dark fringe)
$\lambda=\frac{\Delta y d}{x}$	$\begin{aligned} & \lambda=\text { wavelength of light } \\ & \Delta y=\text { distance separating adjacent fringes } \\ & d=\text { distance between slits } \\ & x=\text { distance from source to screen } \end{aligned}$	approximate wavelength of light

Equations in Unit 5, Force, Motion, Work, and Energy

Equation	Variables	Name, if any
$\begin{aligned} & A_{\mathrm{x}}=\|\vec{A}\| \cos \theta \\ & A_{\mathrm{y}}=\|\vec{A}\| \sin \theta \end{aligned}$	$\begin{aligned} & \vec{A}=\text { vector making an angle } \theta \text { with the } x \text {-axis } \\ & A_{\mathrm{x}}=x \text {-component } \\ & A_{\mathrm{y}}=y \text {-component } \\ & \theta=\text { angle between vector and } x \text {-axis } \end{aligned}$	vector components
$\tau=r_{\perp} F$	$\begin{aligned} & \tau=\text { torque } \\ & F=\text { magnitude of force } \\ & r_{\perp}=\text { lever arm } \end{aligned}$	torque
$\begin{aligned} & \sum \stackrel{\rightharpoonup}{F}=0 \\ & \sum \tau=0 \end{aligned}$	$\sum \vec{F}=$ sum of all forces acting on object $\sum \tau=$ sum of all torques acting on object	condition for static equilibrium
$\vec{p}=m \vec{V}$	$\begin{aligned} & \vec{p}=\text { momentum } \\ & m=\text { mass } \\ & \vec{v}=\text { velocity } \end{aligned}$	momentum
$m_{A} \vec{V}_{A}+m_{B}{\overrightarrow{V_{B}}}=m_{A}{\overrightarrow{V_{A}}}^{\prime}+m_{B} \vec{V}_{B}^{\prime}$	$m_{\mathrm{A}}=$ mass of object A $m_{\mathrm{B}}=$ mass of object B $\vec{V}_{\mathrm{A}}=$ velocity of object A before collision $\vec{V}_{B}=$ velocity of object B before collision $\vec{V}_{A}^{\prime}=$ velocity of object A after collision $\vec{V}_{B}^{\prime}=$ velocity of object B after collision	law of conservation of momentum
$a_{\mathrm{c}}=\frac{\mathrm{V}^{2}}{r}$	$\begin{aligned} & a_{\mathrm{c}}=\text { centripetal acceleration } \\ & v=\text { velocity (magnitude) } \\ & r=\text { radius (of circle) } \end{aligned}$	centripetal acceleration
$F_{\mathrm{c}}=\frac{m \nu^{2}}{r}$	$\begin{aligned} & F_{\mathrm{c}}=\text { centripetal force } \\ & m=\text { mass } \\ & V=\text { velocity } \\ & r=\text { radius of circular path } \end{aligned}$	centripetal force
$\begin{aligned} & \frac{r^{3}}{T^{2}}=k \\ & \frac{r_{A}^{3}}{T_{A}^{2}}=\frac{r_{B}^{3}}{T_{A}^{2}} \end{aligned}$ where A and B are two planets	$\begin{aligned} & r=\text { distance from the Sun } \\ & T=\text { period of planet's revolution } \\ & k=\text { constant } \end{aligned}$	Kepler's laws

Equation	Variables	Name, if any
$F_{\mathrm{g}}=G \frac{m_{1} m_{2}}{r_{2}}$	$F_{\mathrm{g}}=$ force of gravity $G=$ universal gravitational constant $m_{1}=$ first mass $m_{2}=$ second mass $r=$ distance between centres of two masses	Newton's law of universal gravitation
$E_{\mathrm{T}}=\frac{1}{2} m V^{2}+\frac{1}{2} k x^{2}$	$E_{\mathrm{T}}=$ total energy of system $m=$ mass $V=$ speed of the mass at position x $k=$ spring constant $x=$ distance of mass from equilibrium position	
$T=2 \pi \sqrt{\frac{m}{k}}$	$T=$ period $m=$ mass $k=$ spring constant	total energy of mass and spring system
$T=2 \pi \sqrt{\frac{\ell}{g}}$	$T=$ period of pendulum $\ell=$ length of pendulum $g=$ acceleration due to gravity	per spring mass

Equations in Unit 6, Electric, Gravitational, and Magnetic Fields

Equation	Variables	Name, if any
$F_{\mathrm{Q}}=k \frac{q_{1} q_{2}}{r^{2}}$	$F_{\mathrm{Q}}=$ electrostatic force between charges $k=$ Coulomb's constant $q_{1}=$ electric charge on object 1 $q_{2}=$ electric charge on object 2 $r=$ distance between object centres	Coulomb's law
$\vec{E}=\frac{\vec{F}_{\mathrm{F}}}{q}$	$\begin{aligned} & \vec{E}=\text { electric field intensity } \\ & \vec{F}_{\mathrm{Q}}=\text { electric force } \\ & q=\text { electric charge } \end{aligned}$	electric field intensity
$\vec{g}=\frac{\vec{F}_{g}}{m}$	$\vec{g}=$ graviatational field intensity $\vec{F}_{g}=$ graviatational force $m=$ mass	gravitational field intensity
$\|\vec{E}\|=k \frac{q}{r^{2}}$	$\begin{aligned} & \|\vec{E}\|=\text { electric field intensity } \\ & k=\text { Coulomb's constant } \\ & q=\text { source charge } \\ & r=\text { distance from centre of source } \end{aligned}$	electric field intensity near a point charge
$\|\vec{g}\|=G \frac{m_{s}}{r^{2}}$	$\begin{aligned} & \|\stackrel{\rightharpoonup}{g}\|=\text { gravitational field intensity } \\ & G=\text { universal gravitational constant } \\ & m=\text { mass of source of field } \\ & r=\text { distance from centre of source } \end{aligned}$	gravitational field intensity near a point mass
$E_{\mathrm{g}}=-G \frac{M m}{r}$	$E_{\mathrm{g}}=$ gravitational potential energy $G=$ universal gravitational constant $M=$ mass of planet or celestial body $m=$ mass of object $r=$ distance from centre of planet or celestial body	gravitational potential energy

Equation	Variables	Name, if any
$V=k \frac{q}{r}$	$\begin{aligned} & V=\text { electric potential difference } \\ & k=\text { Coulomb's constant } \\ & q=\text { electric charge } \\ & r=\text { distance from centre of charge to point charge } \end{aligned}$	electric potential difference due to a point charge
$V=\frac{\Delta E_{0}}{Q}$	$V=$ electric potential difference $\Delta E_{Q}=$ change in electrical potential energy $Q=$ quantity of charge	electric potential difference between two points in a circuit
$I=\frac{Q}{\Delta t}$	$\begin{aligned} & I=\text { current } \\ & Q=\text { amount of charge } \\ & \Delta t=\text { time interval } \end{aligned}$	electric current
$Q=N e$	$Q=$ amount of charge $N=$ number of elementary charges $e=$ elementary charge	amount of charge
$R=\rho \frac{L}{A}$	$\begin{aligned} & R=\text { resistance } \\ & \rho=\text { resistivity } \\ & L=\text { length of conductor } \\ & A=\text { cross-sectional area } \end{aligned}$	resistance
$V=I R$	$\begin{aligned} & V=\text { potential difference } \\ & I=\text { current } \\ & R=\text { resistance } \end{aligned}$	Ohm's law
$R_{\text {eq }}=R_{1}+R_{2}+R_{3}+\ldots+R_{\mathrm{N}}$	$R_{\text {eq }}=$ equivalent resistance $R_{1}, R_{2}, R_{3}, \ldots R_{\mathrm{N}}=$ resistance of individual loads	equivalent resistance of loads in series
$\frac{1}{R_{\text {eq }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots+\frac{1}{R_{\mathrm{N}}}$	$R_{\text {eq }}=$ equivalent resistance $R_{1}, R_{2}, R_{3}, \ldots R_{\mathrm{N}}=$ resistance of individual loads	equivalent resistance of resistors in parallel
$V_{S}=\xi-V_{\text {int }}$	$\begin{aligned} & V_{S}=\text { terminal voltage } \\ & \xi=\text { electromotive force } \\ & V_{\text {int }}=\text { internal potential drop of battery } \end{aligned}$	terminal voltage
$\begin{aligned} & P=I V \\ & P=\frac{V^{2}}{R} \\ & P=I^{2} R \end{aligned}$	$\begin{aligned} & P=\text { power } \\ & I=\text { current } \\ & V=\text { potential difference } \\ & R=\text { resistance } \end{aligned}$	electric power
$\begin{aligned} & B_{\perp}=\frac{F}{I L} \\ & L=n \ell \end{aligned}$	$\begin{aligned} & B=\text { magnetic field strength } \\ & \perp=\text { perpendicular to } \\ & F=\text { motor force } \\ & I=\text { current } \\ & L=\text { length of conductor } \\ & n=\text { number of coil turns } \\ & \ell=\text { length of each turn } \end{aligned}$	magnetic field strength

Equations in Unit 7, Waves and Modern Physics

Equation	Variables	Name, if any
$\Delta t=\frac{\Delta t_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$	$\begin{aligned} & \Delta t=\text { dilated time } \\ & \Delta t_{0}=\text { proper time } \\ & v=\text { velocity of moving reference frame } \\ & c=\text { speed of light } \end{aligned}$	time dilation
$L=L_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}$	$L=$ contracted length $L_{0}=$ proper length $v=$ velocity of moving reference frame $c=$ speed of light	length contraction
$m=\frac{m_{o}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$	$\begin{aligned} & m=\text { relativistic mass } \\ & m_{0}=\text { rest mass } \\ & V=\text { speed of mass relative to observer } \\ & c=\text { speed of light } \end{aligned}$	relativistic mass
$m c^{2}=m_{0} c^{2}+E_{\mathrm{k}}$	$\begin{aligned} & m=\text { relativistic mass } \\ & m_{0}=\text { rest mass } \\ & c=\text { speed of light } \\ & E_{\mathrm{k}}=\text { kinetic energy } \end{aligned}$	total energy
$E_{\mathrm{k}(\text { max })}=h f-W$	$\begin{aligned} & E_{\mathrm{k}(\max)}=\text { maximum kinetic energy } \\ & \text { of photoelectron } \\ & h=\text { Planck's constant } \\ & f=\text { frequency of electromagnetic radiation } \\ & W=\text { work function of metal } \end{aligned}$	photoelectric effect
$p=\frac{h}{\lambda}$	$\begin{aligned} & p=\text { momentum } \\ & h=\text { Planck's constant } \\ & \lambda=\text { wavelength } \end{aligned}$	momentum of photon
$\lambda=\frac{h}{m v}$	$\begin{aligned} & \lambda=\text { wavelength (of matter wave) } \\ & h=\text { Planck's constant } \\ & m=\text { mass } \\ & v=\text { velocity } \end{aligned}$	de Broglie wavelength

Equations in Unit 8, Nuclear Physics

Equation	Variables	Name, if any
$N=N_{\mathrm{o}}\left(\frac{1}{2}\right)^{\frac{\Delta t}{T_{1}}}$	$N=$ quantity of sample remaining	$N_{\mathrm{o}}=$ quantity of original sample $\Delta t=$ elapsed time $T_{\frac{1}{2}}=$ half-life

