Mathematical Equations

Equations in Unit 1, Kinematics

Equation	Variables	Name, if any
$\Delta \overrightarrow{d} = \overrightarrow{d}_2 - \overrightarrow{d}_1$	$\Delta \overrightarrow{d} = \text{displacement}$ $\overrightarrow{d}_1 = \text{initial position}$ $\overrightarrow{d}_2 = \text{final position}$	displacement
$\overrightarrow{v}_{\text{ave}} = \frac{\Delta \overrightarrow{d}}{\Delta t}$ $\overrightarrow{v}_{\text{ave}} = \frac{\overrightarrow{d}_2 - \overrightarrow{d}_1}{t_2 - t_1}$	$\overrightarrow{v_{\text{ave}}}$ = average velocity $\Delta \overrightarrow{d}$ = displacement Δt = time interval	average velocity
$\overrightarrow{a} = \frac{\Delta \overrightarrow{v}}{\Delta t}$	\overrightarrow{a} = acceleration $\Delta \overrightarrow{v}$ = change in velocity Δt = time interval	acceleration
$a = \frac{v_{\rm f} - v_{\rm i}}{\Delta t}$ $v_{\rm f} = v_{\rm i} + a\Delta t$ $\Delta d = \left(\frac{v_{\rm i} + v_{\rm f}}{2}\right)\Delta t$ $\Delta d = v_{\rm i}\Delta t + \frac{1}{2}a\Delta t^2$	$\begin{array}{l} a = \operatorname{acceleration} \\ v_{i} = \operatorname{initial} velocity \\ v_{f} = \operatorname{final} velocity \\ \Delta t = \operatorname{time} \operatorname{interval} \\ \Delta d = \operatorname{displacement} \end{array}$	motion under uniform acceleration

Equations in Unit 2, Dynamics

Equation	Variables	Name, if any
$\overrightarrow{F}_{g} = m\overrightarrow{g}$	\overrightarrow{F}_{g} = force of gravity (weight) m = mass \overrightarrow{g} = acceleration due to gravity (on Earth)	weight
$F_{\rm f} = \mu F_{\rm N}$	$F_{\rm f}$ = force of friction μ = coefficient of friction $F_{\rm N}$ = normal force	friction
$\overrightarrow{F} = m\overrightarrow{\alpha}$ $\overrightarrow{\alpha} = \frac{\overrightarrow{F}}{m}$	\overrightarrow{F} = force m = mass \overrightarrow{a} = acceleration	Newton's second law
$\overrightarrow{F}_{A \text{ on } B} = -\overrightarrow{F}_{B \text{ on } A}$	$\overrightarrow{F}_{A \text{ on } B}$ = force of object A acting on object B $\overrightarrow{F}_{B \text{ on } A}$ = force of object B acting on object A	Newton's third law
$\overrightarrow{p} = m\overrightarrow{v}$	\overrightarrow{p} = momentum m = mass \overrightarrow{v} = velocity	momentum
$\overrightarrow{J} = \overrightarrow{F} \Delta t$	$\overrightarrow{J} = \text{impulse}$ $\overrightarrow{F} = \text{force}$ $\Delta t = \text{time interval}$	impulse
$\overrightarrow{F}\Delta t = m\overrightarrow{v}_2 - m\overrightarrow{v}_1$	$\overrightarrow{F} = \text{force}$ $\Delta t = \text{time interval}$ $m = \text{mass}$ $\overrightarrow{v}_1 = \text{initial velocity}$ $\overrightarrow{v}_2 = \text{final velocity}$	impulse-momentum theorem

Equations in Unit 3, Momentum and Energy

Equation	Variables	Name, if any
$W = F_{\parallel} \Delta d$ $W = F \Delta d \cos \theta$	W = work done $F_{\parallel} = \text{magnitude of the force (parallel to the displacement)}$ F = magnitude of the force (not parallel to the displacement) $\Delta d = \text{magnitude of the displacement}$ $\theta = \text{angle between force and displacement vectors}$	work done
$E_{\rm k} = \frac{1}{2} m v^2$	$E_{\rm k} = { m kinetic energy}$ $m = { m mass}$ $v = { m velocity}$	kinetic energy
$E_{\rm g} = mg\Delta h$	$E_{\rm g} =$ gravitational potential energy m = mass g = acceleration due to gravity (on Earth) $\Delta h =$ change in height (from reference position)	gravitational potential energy
F = -kx	F = applied force k = spring constant x = length of extension/compression of spring	Hooke's law
$E_{\rm e} = \frac{1}{2}kx^2$	$E_{\rm e}$ = elastic energy k = spring constant x = length of extension/compression	elastic potential energy
$P = \frac{W}{\Delta t}$ $P = \frac{E}{\Delta t}$	P = power E = energy transferred W = work done $\Delta t = \text{time interval}$	power
$\begin{array}{l} \mathrm{efficiency} = \frac{E_{\mathrm{o}}}{E_{\mathrm{i}}} \times 100\% \\ \mathrm{efficiency} = \frac{W_{\mathrm{o}}}{W_{\mathrm{i}}} \times 100\% \end{array}$	$E_{o} = useful output energy$ $E_{i} = input energy$ $W_{o} = useful output work$ $W_{i} = input work$ efficiency	efficiency
$E'_{\rm k} + E'_{\rm g} + E'_{\rm e} = E_{\rm k} + E_{\rm g} + E_{\rm e}$	$E'_{\rm k} = { m kinetic energy after process}$ $E'_{\rm g} = { m gravitational potential energy after process}$ $E'_{\rm e} = { m elastic potential energy after process}$ $E_{\rm k} = { m kinetic energy before process}$ $E_{\rm g} = { m gravitational potential energy before process}$ $E_{\rm e} = { m elastic potential energy before process}$	law of conservation of mechanical energy
$W_{\rm nc} = E_{\rm final} - E_{\rm initial}$	$W_{ m nc}$ = work done by non-conservative forces $E_{ m final}$ = mechanical energy of system after process $E_{ m initial}$ = mechanical energy of system before process	work done by non-conservative forces
$m_{\rm A} \overrightarrow{v}_{\rm A} + m_{\rm B} \overrightarrow{v}_{\rm B} = m_{\rm A} \overrightarrow{v}_{\rm A} + m_{\rm B} \overrightarrow{v}_{\rm B}'$	$M_{\rm A} = {\rm mass} \text{ of object A}$ $M_{\rm B} = {\rm mass} \text{ of object B}$ $\overrightarrow{v_{\rm A}} = {\rm velocity} \text{ of object A before collision}$ $\overrightarrow{v_{\rm B}} = {\rm velocity} \text{ of object B before collision}$ $\overrightarrow{v_{\rm A}} = {\rm velocity} \text{ of object A after collision}$ $\overrightarrow{v_{\rm B}} = {\rm velocity} \text{ of object B after collision}$	law of conservation of momentum

Equations in Unit 4, Waves

Equation	Variables	Name, if any
$T = \frac{\Delta t}{N}$ $f = \frac{N}{\Delta t}$ $f = \frac{1}{T}$	T = period f = frequency $\Delta t = time interval$ N = number of cycles	period and frequency
$v = f\lambda$	v = speed f = frequency $\lambda = \text{wavelength}$	wave equation
$v = 331 + 0.59T_{\rm C}$	v = speed of sound $T_{\rm C} =$ temperature of air	speed of sound in air
$n = \frac{c}{v}$	<pre>n = index of refraction c = speed of light in vacuum v = speed of light in a specific medium</pre>	index of refraction
$\frac{\sin \theta_{\rm i}}{\sin \theta_{\rm k}} = \text{constant}$ $n_{\rm i} \sin \theta_{\rm i} = n_{\rm R} \sin \theta_{\rm R}$	$n_{\rm i} = {\rm index} \ {\rm of} \ {\rm refraction} \ {\rm of} \ {\rm the} \ {\rm incidence} \ {\rm medium}$ $ heta_{\rm i} = {\rm angle} \ {\rm of} \ {\rm incidence}$ $n_{\rm R} = {\rm index} \ {\rm of} \ {\rm refraction} \ {\rm of} \ {\rm the} \ {\rm refracting} \ {\rm medium}$ $ heta_{\rm R} = {\rm angle} \ {\rm of} \ {\rm refraction}$	Snell's law
$L_n = (2n-1)\frac{\lambda}{4}$	L_n = resonance lengths n = a positive integer λ = wavelength	resonance lengths in a closed air column
$L_{\rm n} = \frac{n\lambda}{4}$	$L_{\rm n} = {\rm resonance \ lengths}$ $n = {\rm a \ positive \ integer}$ $\lambda = {\rm wavelength}$	resonance lengths in an open air column
$f_{n} = nf_{1}$ $f_{1} = \frac{v}{2L}$	f_n = resonance frequencies n = a positive integer f_1 = first resonance frequency v = speed of wave L = air column length	resonance frequencies of a fixed-length open air column
$f_n = (2n - 1)f_1$ $f_1 = \frac{v}{4L}$	f_n = resonance frequencies n = a positive integer f_1 = first resonance frequency v = speed of wave L = air column length	resonance frequencies of a fixed-length closed air column
$f_{\text{beat}} = \left f_2 - f_1 \right $	f_{beat} = beat frequency f_1 = frequency of one component wave f_2 = frequency of other component wave	beat frequency
$n\lambda = d\sin\theta$ where $n = 0, 1, 2, 3,$	$\begin{array}{l} n = \mathrm{integer\ number\ of\ full\ wavelengths} \\ \lambda = \mathrm{wavelength\ of\ light} \\ d = \mathrm{distance\ between\ slits} \\ \theta = \mathrm{angle\ between\ slit\ separation\ and\ line} \\ \mathrm{perpendicular\ to\ light\ rays} \end{array}$	constructive interference of light waves (bright fringe)

Equation	Variables	Name, if any
$\left(n-\frac{1}{2}\right)\lambda = d\sin\theta$ where $n = 0, 1, 2, 3,$	$\begin{array}{l} n = \mathrm{integer\ number\ of\ full\ wavelengths} \\ \lambda = \mathrm{wavelength\ of\ light} \\ d = \mathrm{distance\ between\ slits} \\ \theta = \mathrm{angle\ between\ slit\ separation\ and\ line} \\ \mathrm{perpendicular\ to\ light\ rays} \end{array}$	destructive interference of light waves (dark fringe)
$\lambda = \frac{\Delta y d}{x}$	λ = wavelength of light Δy = distance separating adjacent fringes d = distance between slits x = distance from source to screen	approximate wavelength of light

Equations in Unit 5, Force, Motion, Work, and Energy

Equation	Variables	Name, if any
$A_{\rm x} = \vec{A} \cos \theta$ $A_{\rm y} = \vec{A} \sin \theta$	\overrightarrow{A} = vector making an angle θ with the x-axis A_x = x-component A_y = y-component θ = angle between vector and x-axis	vector components
$ au = r_{\perp}F$	$\tau = \text{torque}$ F = magnitude of force $r_{\perp} = \text{lever arm}$	torque
$\sum \overrightarrow{F} = 0$ $\sum \tau = 0$	$\sum \overrightarrow{F}$ = sum of all forces acting on object $\sum \tau$ = sum of all torques acting on object	condition for static equilibrium
$\overrightarrow{p} = m\overrightarrow{v}$	\overrightarrow{p} = momentum m = mass \overrightarrow{v} = velocity	momentum
$m_{\rm A} \overrightarrow{v}_{\rm A} + m_{\rm B} \overrightarrow{v}_{\rm B} = m_{\rm A} \overrightarrow{v}_{\rm A}' + m_{\rm B} \overrightarrow{v}_{\rm B}'$	$m_{A} = \text{mass of object A}$ $m_{B} = \text{mass of object B}$ $\overrightarrow{v_{A}} = \text{velocity of object A before collision}$ $\overrightarrow{v_{B}} = \text{velocity of object B before collision}$ $\overrightarrow{v_{A}}' = \text{velocity of object A after collision}$ $\overrightarrow{v_{B}}' = \text{velocity of object B after collision}$	law of conservation of momentum
$a_c = \frac{V^2}{r}$	a_{c} = centripetal acceleration v = velocity (magnitude) r = radius (of circle)	centripetal acceleration
$F_{\rm c} = \frac{mv^2}{r}$	F_{c} = centripetal force m = mass v = velocity r = radius of circular path	centripetal force
$\begin{array}{ c c }\hline \frac{r^{3}}{T^{2}} = k \\ \frac{r^{3}_{\rm A}}{T^{3}_{\rm A}} = \frac{r^{3}_{\rm B}}{T^{2}_{\rm A}} \\ & \text{where A and B are two planets} \end{array}$	r = distance from the Sun T = period of planet's revolution k = constant	Kepler's laws

Equation	Variables	Name, if any
$F_{\rm g} = G \frac{m_1 m_2}{r_2}$	$F_{\rm g} =$ force of gravity G = universal gravitational constant $m_1 =$ first mass $m_2 =$ second mass r = distance between centres of two masses	Newton's law of universal gravitation
$E_{\rm T} = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$	$E_{\rm T}$ = total energy of system m = mass v = speed of the mass at position xk = spring constant x = distance of mass from equilibrium position	total energy of mass and spring system
$T = 2\pi \sqrt{\frac{m}{k}}$	T = period m = mass k = spring constant	period of mass on spring
$T = 2\pi \sqrt{\frac{\ell}{g}}$	T = period of pendulum $\ell =$ length of pendulum g = acceleration due to gravity	period of pendulum

Equations in Unit 6, Electric, Gravitational, and Magnetic Fields

Equation	Variables	Name, if any
$F_{\rm Q} = k \frac{q_1 q_2}{r^2}$	F_Q = electrostatic force between charges k = Coulomb's constant q_1 = electric charge on object 1 q_2 = electric charge on object 2 r = distance between object centres	Coulomb's law
$\overrightarrow{\overline{E}} = \frac{\overrightarrow{F}_{Q}}{q}$	\overrightarrow{E} = electric field intensity \overrightarrow{F}_Q = electric force q = electric charge	electric field intensity
$\overrightarrow{g} = \frac{\overrightarrow{F}_{g}}{m}$	\overrightarrow{g} = graviatational field intensity $\overrightarrow{F_g}$ = graviatational force m = mass	gravitational field intensity
$\left \overrightarrow{E}\right = k \frac{q}{r^2}$	$ \vec{E} $ = electric field intensity k = Coulomb's constant q = source charge r = distance from centre of source	electric field intensity near a point charge
$\left \overrightarrow{g}\right = G \frac{m_{\rm s}}{r^2}$	$\left \overrightarrow{g}\right $ = gravitational field intensity G = universal gravitational constant m = mass of source of field r = distance from centre of source	gravitational field intensity near a point mass
$E_{\rm g} = -G \frac{Mm}{r}$	$E_{\rm g}$ = gravitational potential energy G = universal gravitational constant M = mass of planet or celestial body m = mass of object r = distance from centre of planet or celestial body	gravitational potential energy

Equation	Variables	Name, if any
$V = k \frac{q}{r}$	V = electric potential difference k = Coulomb's constant q = electric charge r = distance from centre of charge to point charge	electric potential difference due to a point charge
$V = \frac{\Delta E_{\rm Q}}{Q}$	V = electric potential difference $\Delta E_Q =$ change in electrical potential energy Q = quantity of charge	electric potential difference between two points in a circuit
$I = \frac{Q}{\Delta t}$	I = current Q = amount of charge $\Delta t = \text{time interval}$	electric current
Q = Ne	Q = amount of charge N = number of elementary charges e = elementary charge	amount of charge
$R = \rho \frac{L}{A}$	R = resistance ho = resistivity L = length of conductor A = cross-sectional area	resistance
V = IR	V = potential difference I = current R = resistance	Ohm's law
$R_{\rm eq} = R_1 + R_2 + R_3 + \ldots + R_{\rm N}$	$R_{eq} = equivalent resistance$ $R_1, R_2, R_3, \dots R_N = resistance of individual loads$	equivalent resistance of loads in series
$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \ldots + \frac{1}{R_{\rm N}}$	$R_{\rm eq}$ = equivalent resistance $R_1, R_2, R_3, \dots R_{\rm N}$ = resistance of individual loads	equivalent resistance of resistors in parallel
$V_{\rm S} = \xi - V_{\rm int}$	$V_{\rm S}$ = terminal voltage ξ = electromotive force $V_{\rm int}$ = internal potential drop of battery	terminal voltage
$P = IV$ $P = \frac{V^2}{R}$ $P = I^2R$	P = power I = current V = potential difference R = resistance	electric power
$B_{\perp} = \frac{F}{IL}$ $L = n\ell$	B = magnetic field strength $\perp = \text{perpendicular to}$ F = motor force I = current L = length of conductor n = number of coil turns $\ell = \text{length of each turn}$	magnetic field strength

Equations in Unit 7, Waves and Modern Physics

Equation	Variables	Name, if any
$\Delta t = \frac{\Delta t_o}{\sqrt{1 - \frac{v^2}{c^2}}}$	Δt = dilated time Δt_{o} = proper time v = velocity of moving reference frame c = speed of light	time dilation
$L = L_0 \sqrt{1 - \frac{v^2}{c^2}}$	L = contracted length $L_0 = \text{proper length}$ v = velocity of moving reference frame c = speed of light	length contraction
$m = \frac{m_{\rm o}}{\sqrt{1 - \frac{v^2}{c^2}}}$	m = relativistic mass $m_0 = \text{rest mass}$ v = speed of mass relative to observer c = speed of light	relativistic mass
$mc^2 = m_0 c^2 + E_k$	$\begin{array}{l} m = \text{relativistic mass} \\ m_{\mathrm{o}} = \text{rest mass} \\ c = \text{speed of light} \\ E_{\mathrm{k}} = \text{kinetic energy} \end{array}$	total energy
$E_{\rm k(max)} = hf - W$	E _{k(max)} = maximum kinetic energy of photoelectron h = Planck's constant f = frequency of electromagnetic radiation W = work function of metal	photoelectric effect
$p = \frac{h}{\lambda}$	p = momentum h = Planck's constant $\lambda = \text{wavelength}$	momentum of photon
$\lambda = \frac{h}{mv}$	λ = wavelength (of matter wave) h = Planck's constant m = mass v = velocity	de Broglie wavelength

Equations in Unit 8, Nuclear Physics

Equation	Variables	Name, if any
$N = N_{\rm o} \left(\frac{1}{2}\right)^{\frac{M}{T_{\frac{1}{2}}}}$	N = quantity of sample remaining $N_{\rm o} =$ quantity of original sample $\Delta t =$ elapsed time $T_{\frac{1}{2}} =$ half-life	radioactive decay