
January 2004 Physics 12 Selected Response Questions Answer Key Total Value 40

1. A	<u>SCO</u> 326–3	21. B	SCO 328-9
2. C	326–4	22. A	328–7
3. B	325–6	23. B	328–9
4. D	325–6	24. B	329–3
5. C	325–6	25. B	329–2
6. D	325-6	26. C	329–2
7. C	325-6	27. C	329–1
8. D	325-12	28. D	329-1
9. B	325-12	29. C	327-11
10. C	325-13	30. C	327–9
11. A	325–13	31. D	327–9
12. B	327–4	32. D	327–9
13. C	327–4	33. A	327–9
14. D	ACP-2	34. B	329–3
15. D	ACP-2	35. B	329-4
16. D	328-1	36. C	329-4
17. A	328-3	37. B	115-5 fission
18. B	328-6	38. D	329-1
19. A	328-5	39. C	327–9
20. D	ACP-4	40. B	327-9

CONSTRUCTED RESPONSE ANSWER KEY

ALTERNATE SOLUTIONS ARE POSSIBLE AND SHOULD BE SCORED APPROPRIATELY.

41.

$\tan\theta = \frac{v_x}{v_y}$	$\cos 39^{\circ} = \frac{d_{y}}{\Delta d_{re}}$
$\tan \theta = \frac{3.2 \frac{m}{s}}{3.2}$	$0.78 = \frac{52 \text{ m}}{\Delta d_{\text{res}}}$
$4.0\frac{m}{s}$ $\tan \theta = 0.80$	$\Delta d_{res} = \frac{52}{0.78}$
$\tan^{-1}(0.80) = \theta$	$\Delta d_{res} = 67 \text{ m}$
$\theta = 39^{\circ}$	

Final Answer: The object's displacement is 67 m [N39° E].

POINT VALUE:

1 point for diagram (vector - either velocity or displacement)

1 point for angle

2 points for getting Δd

42. If Pivot point is at B

mass of dump truck (
$$m_T$$
)= 2.00 x 10⁴ kg

$$r_T = 16.0 \text{ m}$$

$$F_{gT}$$
=1.96 x 10⁵ N

mass of bridge
$$(m_b) = 1.25 \times 10^5 \text{ kg}$$

$$r_b = 12.0 \text{ m}$$

$$F_{gb}=1.23 \times 10^6 \text{ N}$$

Students must demonstrate a knowledge that the sum of the torques about a given pivot point is 0 and that the net force is 0.

$$\vec{F}_g = m\vec{g}$$
 $\tau = Fr$

$$\Sigma \tau = 0$$

$$-1.23 \times 10^6 \,\text{N} \times 12.0 \,\text{m} - 1.96 \times 10^5 \,\text{N} \times 16.0 \,\text{m} + F_A \times 24 = 0$$

$$F_A = 7.43 \times 10^5 \text{ N up}$$

$$\Sigma \vec{F} = 0$$

$$\vec{F}_{\text{A}} + \vec{F}_{\text{B}} + \vec{F}_{\text{gT}} + \vec{F}_{\text{gb}} = 0$$

$$+7.43 \times 10^{5} \text{N} + \text{F}_{\text{B}} - 1.96 \times 10^{5} \text{N} - 1.225 \times 10^{6} \text{N} = 0$$

$$F_B = 6.78 \times 10^5 \text{ N up}$$

FINAL ANSWER: Pillar A supports 7.43 x 10⁵ N and Pillar B supports 6.78 x 10⁵ N.

POINT VALUE:

2 points for torque calculation

1 point for F_A

1 point for F_B

43. Given: m_1 is 4.0 kg $\vec{a} = 2.0 \text{ m/s}^2$

$$\vec{F}_{NFT} = m\vec{a}$$

$$F_{\sigma^2} - F_{\sigma^1} = (m_2 + m_1)a$$

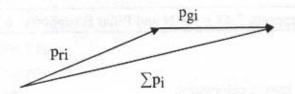
$$m_2g - m_1g = m_1a + m_2a$$

$$m_2g - m_2a = m_1a + m_1g$$

$$m_2 = \frac{m_1(a+g)}{g-a} = \frac{4.0\text{kg}(2.0\text{m/s}^2 + 9.8\text{m/s}^2)}{(9.8\text{m/s}^2 - 2.0\text{m/s}^2)} = 6.1\text{kg}$$

$$\vec{F} = m\vec{a}$$

$$F_r - F_{e1} = m_1 a$$


$$F_T = m_1 a + m_1 g = m_1 (a + g) = (4.0 kg)(2.0 \text{m/s}^2 + 9.8 \text{m/s}^2)$$

$$F_T = 47 \,\mathrm{N}$$

FINAL ANSWER: The mass on the right is 6.1 kg, and the tension is 47 N.

POINT VALUE: 3 points for mass and 2 points for tension

Mass of green car $(m_g) = 1.00 \times 10^3 \text{ kg}$ 44. Initial v of green car $(v_{gi}) = 30 \text{ m/s} [E]$ Mass of red car $(m_r) = 1.50 \times 10^3 \text{ kg}$ Initial v of red car (vri) 25 m/s [E 37.0° N]

Students need to show solving of components if they are using component method.

$$\vec{v}_{rix} = v_{ri} \cos \theta$$

$$\vec{v}_{riv} = v_{ri} \sin \theta$$

$$\vec{v}_{gfx} = v_{gf} \cos \theta$$

$$\vec{v}_{gfy} = v_{gf} \sin \theta$$

$$\vec{v}_{rix} = 25\cos 37$$

$$\vec{v}_{riv} = 25\sin 37$$

$$\vec{v}_{gfx} = 24.1\cos 32.6$$

$$\vec{v}_{rix} = 25\cos 37$$
 $\vec{v}_{riy} = 25\sin 37$ $\vec{v}_{gfx} = 24.1\cos 32.6$ $\vec{v}_{gfy} = 24.1\sin 32.6$

$$v_{rix} = +20.0 \text{ m/s}$$

$$v_{rix} = +20.0 \text{ m/s}$$
 $v_{riy} = +15.0 \text{ m/s}$ $v_{gfx} = +20.3 \text{ m/s}$ $v_{gfy} = +13.0 \text{ m/s}$

$$v_{gfx} = +20.3 \text{ m/s}$$

$$v_{efv} = +13.0 \text{ m/s}$$

BE	FORE	A	FTER
$m_g = 1.00 \times 10^3 \text{ kg}$	$m_r = 1.50 \times 10^3 \text{ kg}$	$m_g=1.00 \times 10^3 \text{ kg}$	$m_r = 1.50 \times 10^3 \text{ kg}$
V _{gix} =+30.0m/s	V _{rix} =+20.0m/s	V _{gfx} =+20.3 m/s	V _{rfx} =? m/s
V _{giy} = 0 m/s	V _{riy} =+15.0m/s	V _{gfy} = +13.0 m/s	V _{rfy} =? m/s

$$\begin{split} & \Sigma \vec{p}_{is} = \Sigma \vec{p}_{fs} \\ & m_g \vec{v}_{gix} + m_i \vec{v}_{ris} = m_g \vec{v}_{gis} + m_i \vec{v}_{ris} \\ & 1.00 \times 10^3 \, \text{kg} \times (+30 \, \frac{\text{m}}{\text{s}}) + 1.50 \times 10^3 \, \text{kg} \times (+20 \, \frac{\text{m}}{\text{s}}) = 1.00 \times 10^3 \, \text{kg} \times (+20.3 \, \frac{\text{m}}{\text{s}}) + 1.50 \times 10^3 \, \text{kg} \times \vec{v}_{ris} \\ & + 6.00 \times 10^4 \, kg \, \frac{\text{m}}{\text{s}} = +2.03 \times 10^4 \, kg \, \frac{\text{m}}{\text{s}} + 1.50 \times 10^3 \, kg \times \vec{v}_{ris} \\ & + 3.97 \times 10^4 \, kg \, \frac{\text{m}}{\text{s}} = 1.50 \times 10^3 \, kg \times \vec{v}_{ris} \\ & v_{ris} = +26.5 \, \frac{m}{\text{s}} \\ & \Sigma \vec{p}_{iy} = \Sigma \vec{p}_{iy} \\ & m_g \vec{v}_{giy} + m_i \vec{v}_{riy} = m_g \vec{v}_{giy} + m_i \vec{v}_{riy} \\ & + 1.00 \times 10^3 \, kg \times (0 \, \frac{\text{m}}{\text{s}}) + 1.50 \times 10^3 \, kg \times (+15 \, \frac{\text{m}}{\text{s}}) = 1.00 \times 10^3 \, kg \times (+13.0 \, \frac{\text{m}}{\text{s}}) + 1.50 \times 10^3 \, kg \times \vec{v}_{riy} \\ & + 2.25 \times 10^4 \, kg \, \frac{\text{m}}{\text{s}} = +1.3 \times 10^4 \, kg \, \frac{\text{m}}{\text{s}} + 1.50 \times 10^3 \, kg \times \vec{v}_{riy} \\ & + 9.50 \times 10^3 \, kg \, \frac{\text{m}}{\text{s}} = 1.50 \times 10^3 \, kg \times \vec{v}_{riy} \\ & \nu_{riy} = +6.33 \, \frac{\text{m}}{\text{s}} \\ & \nu_{riy} = +6.33 \, \frac{\text{m}}{\text{s}} \\ & \nu_{riy} = 742 \, \frac{\text{m}^2}{\text{s}^2} \\ & \tan\theta = \frac{+6.33 \, \frac{\text{m}}{\text{s}}}{+26.5 \, \frac{\text{m}}{\text{s}}} \\ & \tan^{-1}0.239 = \theta \end{split}$$

The final velocity of the red car is 27.2 m/s [E13.4° N].

 $\theta = 13.4^{\circ}$

 $\vec{v}_{rf} = 27.2 \frac{m}{s}$

POINT VALUES: 1 point for diagram, 2 points for magnitude and direction of final answer, 5 points for method

45. Students need to break the initial velocity into components.

Horizontal	Vertical	
$v_x = +30.6 \text{ m/s}$	$v_{iy} = +25.7 \text{ m/s}$	
$d_x = ?$	$\Delta d_y = +6.30 \text{ m}$	1
777	$a_y = -9.8 \text{ m/s}^2$	
	t=?	1

$$\vec{v}_{ix} = \vec{v}_i \cos \theta \qquad \qquad \vec{v}_{iy} = \vec{v}_i \sin \theta$$

$$\vec{v}_{ix} = 40 \frac{\text{m}}{\text{s}} \cos 40 \qquad \vec{v}_{iy} = 40 \frac{\text{m}}{\text{s}} \sin 40$$

$$\vec{v}_{ix} = +30.6 \frac{\text{m}}{\text{s}} \qquad \vec{v}_{iy} = +25.7 \frac{\text{m}}{\text{s}}$$

$$\Delta \vec{d}_{y} = \vec{v}_{iy} \Delta t + \frac{1}{2} \vec{a}_{y} \Delta t^{2}$$

$$+6.30 \text{ m} = +25.7 \frac{\text{m}}{\text{s}} \Delta t + \frac{1}{2} (-9.8 \frac{\text{m}}{\text{s}^{2}}) \Delta t^{2}$$

This can be put into the quadratic formula to get

Δt=0.258 s or 4.99 s

Then:

note: solving for v_{fy} and then t is acceptable

$$\vec{d}_x = \vec{v}_x \Delta t$$

$$\vec{d}_x = +30.6 \frac{m}{s} \times 4.99s$$

$$\vec{d}_x = +153 \text{ m}$$

The horizontal distance the ball travels is 153 m. POINT VALUES: 1 point for components, 1 point for answer, remaining 3 points for method.

46.a)

POINT VALUE: 1 point

b) GIVEN:
$$\vec{F}_c = m\vec{a}_c$$

 $v = 3.20 \text{ m/s}$
 $m = 80.0 \text{ kg}$
 $r = 4.00 \text{m}$

$$\vec{F}_T + \vec{F}_g = m\vec{a}_c$$

$$F_T - mg = 80.0 \text{ kg} \times \frac{v^2}{r}$$

$$F_T - 80.0 \text{ kg}(9.8 \frac{m}{s^s}) = 80.0 \text{ kg} \times \frac{(3.20 \frac{m}{s})^2}{4.00 \text{ m}}$$

$$F_T - 784 \text{ N} = 205 \text{ N}$$

$$F_T = +989 \text{ N}$$

The tension will be 989 N

POINT VALUE: 1 point for final answer, 2 points for method

c)

$$F_T = 1800. N$$

 $v_{min} = ?$
 $\vec{F}_c = \vec{F}_T + \vec{F}_g$
 $F_c = 1800 N - mg$ $F_c = 1800 N - 784 N$
 $\frac{mv^2}{r} = 1016 N$ $v^2 = \frac{(1016N)(r)}{m}$
 $v^2 = 51.0 \frac{m^2}{s^2}$
 $v = 7.13 \frac{m}{s}$

The minimum speed will be 7.13 m/s

POINT VALUE: 1 point for final answer 1 point for method

GIVEN:

 $m_1 = 40.0 \text{ kg}$

 $m_2 = 40.0 \text{ kg}$

r = 8.00 m

 $G=6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$

$$F_g = \frac{Gm_1m_2}{r^2}$$

$$F_{g} = \frac{6.67 \times 10^{-11} \frac{\text{Nm}^{2}}{\text{kg}^{2}} (40.0 \text{kg}) (40.0 \text{kg})}{(8.00 \text{ m})^{2}}$$

$$F_g = 1.67 \times 10^{-9} \text{ N}$$

The gravitational force of attraction is 1.67 X 10-9 N.

POINT VALUE: answer 1, method 1

b)

$$F_g \alpha \frac{m_1}{r^2}$$

 $F_g \alpha \frac{2m_1}{r^2}$ We do not want to have a change in F_g

so therefore we need to figure out how to get a 2 on the bottom of the expression.

$$F_g \alpha \frac{2m_1}{2r^2}$$

$$F_g \alpha \frac{2m_1}{(\sqrt{2}r)^2}$$

$$\sqrt{2} \times r = \text{new } r$$

$$1.41 \times 8.00 \text{ m} = 11.3 \text{ m}$$

The new radius would have to be 11.3 m

POINT VALUE: answer 1, method 1.

- c) i) The strength of the gravitational field diminishes with the square of the separation, but is still significant at this distance. POINT VALUE: 1
- ii) This answer should include an understanding that there is an absence of an interaction force when one "feels" weightless. POINT VALUE: 1

48.

GIVEN: $T_1 = 0.12 \text{ s}$

$$\frac{T_2}{T_1} = \frac{2\pi\sqrt{\frac{m_2}{k}}}{2\pi\sqrt{\frac{m_1}{k}}} = \frac{\sqrt{m_2}}{\sqrt{m_1}} = \frac{\sqrt{3}}{\sqrt{1}} = \frac{\sqrt{3}}{1}$$

$$T_2 = \sqrt{3}(T_1) = \sqrt{3} \times 0.12$$
s=0.21s

The period for the heavier mass is 0.21 s.

POINT VALUE: answer 1, method 1

49. A) The positive peak is induced by the North pole and the negative peak is induced by the South pole.

POINT VALUE: 1

B) The South pole of the magnet goes through the coil after the North pole, and will be going faster due to gravitational acceleration. The higher speed creates a higher potential.

POINT VALUE: 2

C) The sketch should show a negative peak first, followed by a slightly higher positive peak.

POINT VALUE: 2

50. GIVEN:

 $Q_A=+45 \mu C$

 $Q_B = +36 \mu C$

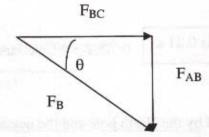
 $Q_C = -55 \mu C$

r_{AB}=0.0320 m

r_{BC}=0.0470 m

 $k=9.0 \text{ X}10^9 \text{ Nm}^2/\text{kg}^2$

$$F_{BC} = \frac{kQ_BQ_C}{r^2}$$


$$F_{BC} = \frac{9.0 \times 10^9 \frac{Nm^2}{kg^2} (36.0 \times 10^{-6} \text{C})(55.0 \times 10^{-6} \text{C})}{(0.0470 \text{ m})^2}$$

$$F_{BC} = 8.07 \times 10^3 \text{ N} \rightarrow$$

$$F_{AB} = \frac{kQ_A Q_B}{r^2}$$

$$= \frac{9.0 \times 10^9 \frac{Nm^2}{kg^2} (45.0 \times 10^{-6} \text{C})(36.0 \times 10^{-6} \text{C})}{(0.0320 \text{ m})^2}$$

$$F_{AB} = 1.42 \times 10^4 \text{ N} \quad \downarrow$$

$$\begin{split} F_B^{\ 2} &= F_{BC}^{\ 2} + F_{AB}^{\ 2} \\ F_B^{\ 2} &= (8.07 \times 10^3 \, \text{N})^2 + (1.42 \times 10^4 \, \text{N})^2 \\ F_B &= 1.63 \times 10^4 \, \, \text{N} \\ \end{split} \qquad \begin{aligned} \tan \theta &= \frac{F_{AB}}{F_{BC}} \\ \tan \theta &= \frac{1.42 \times 10^4 \, \text{N}}{8.07 \times 10^3 \, \text{N}} \\ \tan^{-1}(1.76) &= \theta \\ \theta &= 60.4^\circ \end{aligned}$$

The net force acting on charge B is 1.63 X 10⁴ N [E 60.4°S].

POINT VALUE: diagram 1 point

each force 1 point

magnitude and direction of final answer 2 points

CASE STUDY ANSWER KEY

51.

A) fuel, moderator, and coolant

POINT VALUE: 1 pt (all or nothing)

B)

$${}^{238}_{92}U + {}^{1}_{0}n \rightarrow {}^{239}_{92}U$$

 ${}^{239}_{92}U \rightarrow {}^{239}_{93}Np + {}^{0}_{-1}e$
 ${}^{239}_{93}Np \rightarrow {}^{239}_{94}Pu + {}^{0}_{-1}e$

$$^{239}_{94}$$
Pu $\rightarrow ^{235}_{92}$ U $+^{4}_{2}$ He

(neutron, beta, beta, alpha particle)

POINT VALUE: 2 points (0.5 points each), alternate expressions for beta and alpha accepted)

C)

approximately 0.7 for Uranium – 235
 approximately 4.5 for Uranium – 238

POINT VALUE: 1 pt (0.5 for each)

ii)

The half-life of Uranium-235 is shorter than that of U-238.

The relative concentration of U-235 to U-238 decreased to the point that the nuclear reaction could no longer be sustained.

Students should connect the knowledge that half-lives of the elements are different (based on the graphs), which will change the relative concentration of the Uranium isotopes.

POINT VALUE: 1 point

0.5 if they state half-life as the cause

0.5 if they state how the ratio affects the chain reaction

D) Control Rods act as neutron absorbers POINT VALUE: 1 point

E)
$${}^{235}_{92}U + {}^{1}_{0}n \rightarrow 3 {}^{1}_{0}n + {}^{141}_{56}Ba + {}^{92}_{36}Kr$$

$$235.044 \text{ u} + 1.009 \text{ u} \rightarrow 3(1.009 \text{ u}) + 140.883 \text{ u} + 91.905 \text{ u}$$

$$236.053 \text{ u} \rightarrow 235.815 \text{ u}$$

$$\text{mass defect} = 236.053 \text{ u} - 235.815 \text{ u}$$

$$\text{mass defect} = 0.238 \text{ u}$$

$$0.238 \text{ u} \times 1.6605 \times 10^{-27} \frac{\text{kg}}{\text{u}} = 3.95 \times 10^{-28} \text{kg}$$

$$E = \text{mc}^{2}$$

$$E = 3.95 \times 10^{-28} \text{kg} \times (3.00 \times 10^{8} \frac{\text{m}}{\text{s}})^{2}$$

$$E = 3.56 \times 10^{-11} \frac{\text{J}}{\text{atom}}$$

The amount of energy, in Joules per atom is 3.56 x 10⁻¹¹.

POINT VALUE: 4 points The following breakdown is for the method shown above.

- 2 points for mass defect
- 2 points for energy per atom