

NOVA SCOTIA EXAMINATIONS PHYSICS 12 JANUARY 2003

MARKING GUIDE

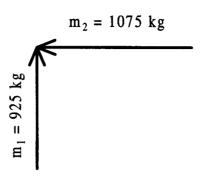
January 2003 Physics 12 Multiple Choice Answers Total Value 40

1. A	SCO ACP 1	21. A	<u>SCO</u> 328–1
2. B	ACP 1	22. B	329–3
3. A	ACP 1	23. D	329–1
4. A	ACP 1	24. D	329–1
5. A	ACP 1	25. C	327–11
6. B	213–5 SHM	26. C	327–11
7. A	213–5 SHM	27. B	115-3 deB
8. A	327–4	28. D	327–9
9. B	325–6	29. C	326–9
10. D	325–6	30. B	326–9
11. C	325–6	31. C	329–4
12. C	325–6	32. C	329–4
13. D	325–12	33. B	329–4
14. C	325–13	34. A	329–6
15. B	326–3	35. A	329–4
16. C	326–3	36. B	115–5 fission
17. A	215–2 Ug	37. A	329–4
18. A	328–5	38. B	115-5 fission
19. C	328-9	39. D	329–6

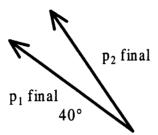
40. **C** 329–4

20. **B** 328–7

41. Note to markers: This question should provide an opportunity to see whether students organize and solve expressions before replacing variables with data. The final answer should not receive more than 2 out of the total five marks.


The horizontal components of the forces in rope 1 and rope 3 must be equal in magnitude, if the signs are in static equilibrium.

$$F_{xl} = F_{x2}$$


$$\frac{m_1 g}{\tan 60^\circ} = \frac{m_2 g}{\tan 40.9^\circ}$$

$$m_2 = m_1 \frac{\tan 40.9^{\circ}}{\tan 60.0^{\circ}} = 1.25 \text{ kg}$$
 total value = 5

42. before:

after: m_1 has a velocity of 52.0 km/hr, 40.0° N of W, and m_2 has a speed of 40.0 km/hr, 50.0° N of W.

diagrams and interpretation value: 2

The sum of the components of the momenta is the same before and after the collision.

 p_1 after = 925 kg x 52.0 km/hr = 4.81 x 10^4 kg·km/hr at 40.0° N of W.

$$p_{1x}$$
 (after) = (4.81 x 10⁴ kg-km/hr)(cos 40.0°) = 3.68 x 10⁴ kg-km/hr, W p_{1y} (after) = (4.81 x 10⁴ kg-km/hr)(sin 40.0°) = 3.09 x 10⁴ kg-km/hr, N

 p_2 after = 1075 kg x 40.0 km/hr = 4.30 x 10⁴ kg-km/hr at 50.0° N of W.

$$p_{2x}$$
 (after) = (4.30 x 10⁴ kg-km/hr)(cos 50.0°) = 2.76 x 10⁴ kg-km/hr, W p_{2y} (after) = (4.30 x 10⁴ kg-km/hr)(sin50.0°) = 3.29 x 10⁴ kg-km/hr, N

$$\sum p_x = 6.44 \times 10^4 \text{ kg-km/hr}, \text{ W}$$
 before and after value: 1 $\sum p_y = 6.38 \times 10^4 \text{ kg-km/hr}, \text{ N}$ before and after value: 1

:.
$$v_2$$
 before = $p_x / m_2 = \frac{6.44 \times 10^4 \text{ kg-km/hr}}{1075 \text{ kg}} = 60.0 \text{ km/hr}, W$ value: 2

$$v_1 \text{ before} = p_y / m_1 = \frac{6.38 \times 10^4 \text{ kg-km/hr}}{925 \text{ kg}} = 69.0 \text{ km/hr}, N$$
 value: 2

- 43. Initial velocity: 20.0 m/s, 37.0° from the horizontal.
- A) $v_x = 20.0 \text{ m/s } (\cos 37.0^\circ) = 16.0 \text{ m/s to the right}$ value: 1/2 $v_y = 20.0 \text{ m/s } (\sin 37.0^\circ) = 12.0 \text{ m/s up}$ value: 1/2

$$a = \frac{v_f - v_i}{\Delta t}$$

$$\Delta t_{up} = \frac{v_f - v_i}{a} = \frac{0 - 12\text{m/s}}{-9.80\text{m/s}^2} = 1.22 \text{ s}$$
 value: 1

total time in air = 2.44 s

value: 1

- B) $\Delta d = v_x \Delta t = (16.0 \text{ m/s})(2.44 \text{ s}) = 39.0 \text{ m is the range}$ value: 2
- C) for second half of flight, from top to bottom

$$\Delta d = v_y \Delta t + \frac{1}{2} a \Delta t^2 = 0 + \frac{1}{2} (-9.80 \text{ m/s}^2) (1.22 \text{ s})^2 = -7.29 \text{ m (down)}$$

Therefore the height reached by the ball is 7.29 m value: 2 (v² formula varies)

D) The horizontal component of the velocity as it reaches the ground is 16.0 m/s, right.

$$v_f = v_i + a\Delta = 0 + (-9.80 \text{m/s}^2)(1.22 \text{ s}) = -12.0 \text{ m/s}$$

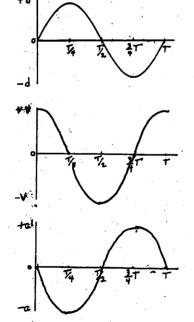
This is the same magnitude as the vertical component at launch, but in the downward direction.

value: 2

44.

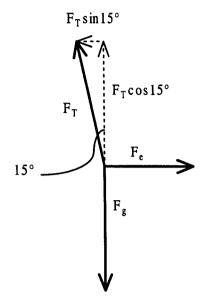
$$\frac{r_e^3}{T_e^2} = \frac{r_o^3}{T_o^2}$$

value: 3


$$T_o = \sqrt{\frac{r_o^3 \times T_e^2}{r_e^3}} = \sqrt{\frac{(10r_e)^3 (365 \text{ days})^2}{r_e^3}} = 11500 \text{ days}$$

$$v_c = \frac{2\pi r}{T} = \frac{2\pi (10 \times 1.50 \times 10^{11})}{11500 \text{ days}(24 \text{hr/day})(3600 \text{s/hr})} = 9490 \text{ m/s}$$

value: 2


45. The radius of Jupiter is larger than the radius of the Earth. Gravitational force is related inversely to distance **squared.** The radius of Jupiter would be needed to provide a calculated answer. **value: 3**

46.

value: 2

47. A)

The diagram shows the forces acting on the right-hand pith ball.

$$F_T \cos 15^\circ = F_g$$

$$F_T = \frac{F_g}{\cos 15^\circ} = \frac{(2.0 \times 10^{-3} \text{ kg})(9.80 \text{ m/s}^2)}{.966} = 0.020 \text{N}$$

value: 2

B)
$$F_e = F_T \sin 15^\circ = \frac{kq^2}{r^2}$$

$$q = \sqrt{\frac{F_T \sin 15^\circ r^2}{k}} = \sqrt{\frac{(0.020\text{N})(\sin 15^\circ)(0.15\text{ m})^2}{9.0 \times 10^9 \text{ Nm}^2/\text{C}^2}} = 1.1 \times 10^{-7} \text{C}$$
value: 5

NOTE: mark allocation will vary, depending on the approach the student takes. For example, many students may find F_e as a separate step, and then use that value in the final solution.

48. A) The electron will curve to the right (clockwise) in an approximately circular curve.

B)
$$F_m = F_c$$

$$qvB = \frac{mv^2}{r}$$

$$r = \frac{mv}{qB} = \frac{(9.11 \times 10^{-31} \text{ kg})(5.0 \times 10^5 \text{ m/s})}{(1.6 \times 10^{-19} \text{ C})(4.0 \times 10^{-2} \text{ T})} = 7.1 \times 10^{-5} \text{ m}$$

value: 3

C) Since the force is perpendicular to the motion, the speed will not change, and therefore the kinetic energy will remain the same. value: 2

49. A)
$$E = -\frac{13.6}{n^2} \text{ eV}$$

$$E_2 = -\frac{13.6}{2^2} = -3.4 \text{ eV}$$

$$E_3 = -\frac{13.6}{3^2} = -1.5 \text{ eV}$$
since $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$, $E_2 = -5.4 \times 10^{-19} \text{ J}$ and $E_3 = -2.4 \times 10^{-19} \text{ J}$ and $\Delta E = (+)3.0 \times 10^{-19} \text{ J}$

value: 3

49. B)
$$E = \frac{hc}{\lambda} \qquad \lambda = \frac{hc}{E} = \frac{(6.626 \times 10^{-34} \text{ Js})(3.0 \times 10^8 \text{ m/s})}{3.0 \times 10^{-19} \text{ J}} = 660 \text{ nm}$$
value: 2

This is in the visible range of 400-750 nm

50. Case Study

- A) Air friction supplied the force by which electrons were stripped from droplets. value: 1
 - B) positive negative

The sketch should show a straight line field directed from positive to negative.

value: 1

value: 1

C)
$$E = \frac{F_e}{q}$$
 $F_e = qE = (4.8 \times 10^{-19} \text{ C})(2.62 \times 10^6 \text{ N/C}) = 1.26 \times 10^{-12} \text{ N}$

D)

value: 1

$$E = \frac{F_e}{q} \qquad F_e = F_g = mg \qquad \text{therefore } E = \frac{mg}{q}$$
 E) value: 2

F)
$$\frac{mg}{q} = \frac{V}{d}$$
 $q = \frac{dmg}{V}$ value: 1

G)
$$q = \frac{dmg}{V} = \frac{(1.60 \times 10^{-3} \text{ m})(3.00 \times 10^{-15} \text{ kg})(9.80 \text{ m/s}^2)}{4200 \text{ V}} = 1.12 \times 10^{-20} \text{ C}$$

value: 1

No, selecting data to prove a point is not acceptable. If a clear reason to discount certain trials existed, the trials deleted and the reasoning should be published in a report for peer review.

value: 2